
1© ICON Computing, PlatinumTechnology http://www.iconcomp.com

1

Objects, Components, and Frameworks with UML

The Catalysis™ Approach

Desmond D’Souza

ICON Computing, a Platinum Company

Object, Components, Frameworks: Methods, Consulting, Training
 “Looking for a few good minds!”

http://www.iconcomp.com

Welcome!

What is Catalysis?

Catalysis is a standards-based methodology for the systematic development of object and component-based
systems. In this presentation, we cover highlights of the method and outline how it enables the development of
models and designs from frameworks.

Catalysis has been adopted by several major projects, is being evaluated as the UML-based method and process for
many more projects, has forthcoming tool support from multiple major tool vendors, and has services and related
support available today.

Who is ICON?

ICON Computing was instrumental in influencing the UML (Unified Modeling Language) effort in 1996-97,
bringing its work on Catalysis to bear on the emerging standards in the modeling market. ICON provides expert
consulting and training in object technology and associated component-based development and frameworks. We
offer skills in strategic planning, management of object and component projects, re-use, software architecture,
analysis, design patterns, domain-specific patterns and frameworks, design, and programming. We emphasize good
design and clear models in our courses, and transfer these skills to projects in our consulting and HeadStart
programs.

Contact us at:

(512) 258-8437 Fax: (512) 258-0086

info@iconcomp.com http://www.iconcomp.com

2© ICON Computing http://www.iconcomp.com

2© ICON Computing

What is Catalysis™?

❒ A next-generation standards-aligned method
• For open distributed object systems

– from components and frameworks

– that reflect and support an adaptive enterprise

Precise models and systematic process
UML partner, OMG standards, TI/MS standards

Dynamic Architectures

Compose pre-built interfaces,
models, specs, implementations...

…all built for extensibili ty

From business
to code

Authors: D. D’Souza and A. Wills

Addison Wesley, “ Objects, Components, Frameworks…” 1997

Taking apart the marketing jargon on this slide, we have:

next-generation: Catalysis provides a systematic process for the construction of precise models starting from
requirements, for maintaining those models, for re-factoring them and extracting patterns, and for reverse-
engineering from detailed description to abstract models.

standards-aligned: ICON has been a central player in the development of Catalysis and its contribution to
standards including the Unified Modeling Language (UML), accepted as a standard by the Object
Management Group in Sept ‘97, and component-specification standards defined by Texas Instruments and
Microsoft, the CBD-96 standards from TI/Sterling, and the Cool:Cubes tool family from Sterling.

open distributed object systems:Our ultimate goal is to support the modeling and construction of open
distributed systems -- systems whose form and function evolves over time, as components and services are
added and removed from it.

components:Little, if any, modeling work should be done from scratch. If you draw two boxes and a line
between them, chances are someone has done something very similar before, with an intent that is also very
similar, if you only abstract away certain specifics. Al l work done in Catalysis can be based on composition
of existing components, at the level of code, design patterns and architectures, and even requirements
specif ication.

frameworks: In particular, some of these components are buil t so they are easily adaptable and extensible. We
call these components “ frameworks” , generalizing somewhat the traditional definition of a framework as a
collection of collaborating abstract classes.

adaptive enterprise: And, we want to use these techniques from business to code and back.

Catalysis was originally developed by Desmond D’Souza and Alan Wills. The text on Catalysis was published by
Addison Wesley in October 1998.

3© ICON Computing http://www.iconcomp.com

3© ICON Computing

Outline

❒ Method Overview - UML constructs with Catalysis
• Three Levels
• Three Constructs

• Three Principles

❒ Component Specification - Types

❒ Component Design - Collaborations

❒ Component Architectures

❒ Refinements

❒ Business Example and Development Process

❒ Frameworks

Here is an outline of this presentation.

Method overview: Catalysis has a simple core, covering three levels of description, using three basic modeling
constructs, applying three underlying principles.

Following this, we will examine the modeling constructs in turn, and then see how they fit together in the
Catalysis development process.

Component Specification - Types: A type provides an external description of the behavior of a component or
object.

Component Design - Collaborations: A collaboration describes how the internal parts of a component interact
to provide its required behaviors i.e. its internal design.

Component Architectures: Designing interacting components places some unique demands, and offers new
opportunities, for architectural elements.

Refinement: One of the unique features of Catalysis is its support for multiple levels of description of the same
phenomenon, based upon a strong notion of refinement. Refinement provides a well-founded basis for a use-
case driven approach, and for the clear separation of external behavior specs from implementation.

Business Example: This section shows how Catalysis constructs can be used at the level of domain or business
models.

Frameworks: And lastly, we illustrate the power of the framework construct in Catalysis. Frameworks capture
common patterns of interactions, requirements, design transformations, and more, in a form that is both
abstract enough to permit adaptation and application in many different contexts, and precise enough to permit
sophisticated tool support and reasoning.

4© ICON Computing http://www.iconcomp.com

4© ICON Computing

ICON/Catalysis - A UML Partner

UML 0.8

Microsoft

UML 0.91

HP

Interfaces
Components

Re-use

UML 1.0

ICON/Catalysis

Types
Behavior Specs
Refinement
Collaborations
Frameworks

Oracle...

TI...

MCI-systemhouse

OMG

Unified
Modeling
Language

First, a brief bit of perspective on the role Catalysis has played in the UML.

UML 0.8 was released by Rational in October 1995, based on the work of Booch, Rumbaugh, and Jacobsen.

In Fall 1996, Microsoft and Hewlett-Packard joined the consortium of companies that was defining UML,
initiated by Rational. Microsoft brought some modeling requirements based on its COM model of interfaces
of components; HP brought a focus on re-use.

In Oct-Nov 1996, several other companies joined this consortium. Oracle came in with a particular interest in
the modeling of business processes and workflows. Texas Instruments software came in with an interest in
components and business modeling, and in Catalysis. MCI Systemhouse’s interest was distributed systems.

And ICON Computing joined this lofty team with its work on Catalysis. As a partner in defining the UML 1.0,
ICON brought a focus on several key elements of Catalysis: types (as distinct from classes), precise
specification of behavior, collaborations as definitions of multi-party behavior, refinement of models, and
frameworks as a means to abstract and apply recurring patterns in modeling. This technical contribution to
the UML team was largely done by Desmond D’Souza, with input from his Catalysis co-author, Alan Wills.

The UML 1.0 spec was submitted to the Object Management Group in Jan 1997, and accepted as a standard in
September 1997.

5© ICON Computing http://www.iconcomp.com

5© ICON Computing

Three Modeling Scopes or Levels

'RPDLQ�%XVLQHVV'RPDLQ�%XVLQHVV

&RPSRQHQW�6SHF&RPSRQHQW�6SHF

,QWHUQDO�'HVLJQ,QWHUQDO�'HVLJQ

*RDO

6SHFLI\�6ROXWLRQ
VFRSH�DQG�GHILQH�FRPSRQHQW�UHVSRQVLELOLWLHV
GHILQH�FRPSRQHQW�V\VWHP�LQWHUIDFH
VSHFLI\�GHVLUHG�FRPSRQHQW�RSHUDWLRQV

,GHQWLI\�3UREOHP
HVWDEOLVK�SUREOHP�GRPDLQ�WHUPLQRORJ\
XQGHUVWDQG�EXVLQHVV�SURFHVV��UROHV��FROODERUDWLRQV
EXLOG�DV�LV�DQG�WR�EH�PRGHOV

,PSOHPHQW�WKH�6SHF
GHILQH�LQWHUQDO�DUFKLWHFWXUH
GHILQH�LQWHUQDO�FRPSRQHQWV�DQG�FROODERUDWLRQV
VSHFLI\�HDFK�FRPSRQHQW

/HYHO�6FRSH

Catalysis supports three levels of description, which, recursively, span most interesting levels of modeling problems.

Domain/Business Models: For any component, a domain model describes the context in which that component
will reside. This may be a model of the environment for a real-time system, or a model of a business for an
information system or business application, or a model of terms and concepts for some other application.
Domain models can have an “as-is” element distinct from a “to-be” . This is particularly true in the case of
business systems, or the re-engineering of an existing system, where the as-is model will be modified to look
like the to-be model, requiring some changes in the environment or context itself as well. For example, we
may decide to introduce a new component into a business, and change some of our business processes
accordingly.

Domain models can be interesting and useful independent of any software system or component. In these
cases the domain model describes some phenomenon or subject area that is deemed of interest for some
purpose.

Component External Specs: This level focuses on the component(s) of interest -- usually those to be built or
modified -- and builds a description of its externally visible behavior with its environment.

Component Internal Design: This level effectively “opens the box” for a given component, and describes how
it is designed internally to provide its externally specified behavior. It describes the different implemented
parts that comprise it, their connections, and their interactions.

Note that we can, at this point, specify any one of these internal components in terms of its externally visible
behavior in the context of the component internal design ,which constitutes its “environment”. This process is
recursive as far as necessary or useful. We would typically stop at the level of components that exist, or that
can be bought or built.

6© ICON Computing http://www.iconcomp.com

6© ICON Computing

Three Modeling Constructs
3XUSRVH

VSHFLILHV�H[WHUQDO�EHKDYLRU�RI�DQ�REMHFW

VSHFLILHV�EHKDYLRU�RI�D�JURXS�RI�REMHFWV

UHODWH�GLIIHUHQW�OHYHOV�RI�GHVFULSWLRQ�RI�EHKDYLRU
PDS�RU�WUDFH�IURP�UHILQHPHQW�WR�DEVWUDFWLRQ

UHFXUULQJ�SDWWHUQV�RI�FROODERUDWLRQV��W\SHV��GHVLJQV��HWF�
GHILQH�JHQHULFDOO\��´SOXJ�LQµ�WR�VSHFLDOL]H

&ROODERUDWLRQ

7\SH

5HILQHPHQW

0RGHO
&RQVWUXFW

)
U
D
P
H
Z
R
U
N

Catalysis has two primary modeling constructs:

Collaboration: A description of how a group of objects jointly behaves when configured together in specific
ways.

Type: a specification of the externally visible behavior of some object, abstracting from details of its internal
representation, algorithms, and data-structures. A type is, in fact, a degenerate collaboration; it says as little
as possible about objects collaborating with the one under focus.

For either a individual object or a group collaboration, we can model the description at different levels of
abstraction. For example, a collaboration may be described in terms of very abstract actions between the
participants, or in terms of a detailed point-to-point protocol of individual messages. “You attend this seminar” is an
abstract description, whose refinement could be “You sign up for the seminar; listen and ask questions, and provide
feedback and criticism”.

Refinement: A relationship between two description of the same phenomenon at two levels of abstraction. To
justify the claim that one is a refinement of the other, there must be some mapping to each element of the
abstract description, from some elements of the more concrete one.

Across many types, collaborations, or refinements, we will encounter recurring patterns of similar structures of
designs or specifications of structure and behavior. For example, the collaborations involved in submitting an
employment application to a company are similar to the collaborations involved in submitting a printing job to a
printer. Similarly, the specification for allocating slots of machine time to production lots on a factory floor is
similar to that for assigning vehicles to rental requests at a car-rental company. And, the refinement involved in
making an ATM user validate their card before withdrawing money is similar to the refinement in making a user
logon before using a computer system.

Framework: Captures a pattern of types, collaborations, refinements, design transformations, etc.

7© ICON Computing http://www.iconcomp.com

7© ICON Computing

Three Principles

,QWHQW

H[SRVH�JDSV�DQG�LQFRQVLVWHQFLHV�HDUO\
PDNH�DEVWUDFW�PRGHOV�DFFXUDWH��QRW�IX]]\

IRFXV�RQ�HVVHQWLDO�DVSHFWV��GHIHUULQJ�RWKHUV
XQFOXWWHUHG�GHVFULSWLRQ�RI�UHTXLUHPHQWV�DQG

DUFKLWHFWXUH

DOO�ZRUN�GRQH�E\�DGDSWLQJ�DQG�FRPSRVLQJ�SDUWV
PRGHOV��DUFKLWHFWXUHV��DQG�GHVLJQV�DUH�DVVHWV

$EVWUDFWLRQ

3UHFLVLRQ

3OXJJDEOH�3DUWV

3ULQFLSOH

No method can really be coherent with some underlying principles that it (or its creators) hold dear. In Catalysis,
these principles are:

Abstraction: It is overwhelming to deal with the complexity of a software system at the level of code. Abstract
models of that code let us separately describe its functional behavior, its relationship to the problem domain,
its performance characteristics, the architecture it uses, etc. Any piece of source code will have been written
to satisfy a combination of requirements imposed from each of these different points of view, each describing
a different aspect of the problem. Examples of common abstractions are interfaces (which hide information
about implementation), and architectural patterns (which hide details of usages of those patterns in different
domains).

Precision: Abstract descriptions, unfortunately, have a history of being extremely fuzzy and poorly defined. As
a consequence, a very elegantly laid out drawing of boxes which claims to describe the system architecture
may not have sufficiently precise meaning to show that a particular implementation either does or does not
conform to that architecture. Abstraction does not require loss of precision -- provided the appropriate tools
and constructs are used. Abstraction with precision lets us work at different levels of detail with some
confidence that the abstractions are accurate representations of the eventual implementation.

Note, however, that precision must have its rightful place. There is always need for creativity, and
formalism is not always appropriate. Different projects and development staff also justify different degrees
of precision.

Pluggable parts: All development work should be done by (a) adapting and assembling existing parts, be they
implementation code, requirements specs, or design patterns, or (b) disassembling existing design to re-factor
out more abstract parts from it.

8© ICON Computing http://www.iconcomp.com

8© ICON Computing

6FRSH &RQVWUXFWV

A Uniform Approach

❒ Constructs and principles apply (recursively) at all levels

3ULQFLSOHV

abstraction
precision
pluggable parts

collaboration
type
refinement

business
component spec
component design

fram
ew

ork

Development
Process

The core of Catalysis is simple partly because the three legs it builds on - its constructs, principles, and levels of
scope - are simple and consistent in the way they interact with each other. For example:

In specifying a business model, we may build a collaboration to describe a business interaction. We keep this
description abstract by deferring details of the protocols by which the parties interact and exchange
information. We still want this description to be precise, however, and use our modeling tools to make it so.
A more detailed level will refine the actions in this collaboration to a much more detailed interaction
sequence. Because the abstract description was nonetheless precise, the refined model can be shown to
conform it (or be refuted!).

The strength of the approach comes from the fact that the small number of core concepts form a coherent whole,
and can be combined together in a great many different ways.

9© ICON Computing http://www.iconcomp.com

9© ICON Computing

Outline

❒ Method Overview

❒ Component Specification - Types
❒ Component Design - Collaborations

❒ Component Architectures

❒ Refinements

❒ Business Example and Development Process

❒ Frameworks

10© ICON Computing http://www.iconcomp.com

© ICON Computing

Type of an Object: Multiple (Inter)Faces

• Object or component plays different roles

• It offers multiple interfaces, and is seen as different types

• Benefits to the airline, hotel: less coupling, more “pluggability”

• Benefits to person: easier to adapt to “plug” into a bigger system

Passenger
 check Baggage
 board
 deplane

Guest
 check In
 room Service
 check Out

What Type? What Type?

“Plug” into new service

Airline
Hotel

One of the most fundamental aspects of component-based design is that of a component interface.

And, one of the first things we discover about component interfaces is that one component may offer multiple
interfaces. Just as an object, in the real world, can play different roles, and hence be perceived as different types by
different collaborating clients. For example:

A person, in his interactions with an airline, is perceived as being of type Passenger. Specifically, any object
that could provide passenger-like behavior -- check baggage, board, deplane, etc -- could be “plugged into”
an airline and travel. This is true regardless of details of how that person implements these behaviors.

That same person, in his interactions with a hotel, is perceived as being of type Guest. Any object that could
provide guest-like behavior -- checkin, room service, checkout, etc -- could be “plugged into” a hotel and
enjoy a stay.

The type of a component -- a description of the interface it offers a client -- varies across its interfaces.

In addition, if we need to integrate this object or component into a larger system in which it needs to “plug-into” a
new service, it will typically mean a new interface is required e.g. the person must be capable of playing a Student
role to participate in a broader scope system.

11© ICON Computing http://www.iconcomp.com

© ICON Computing

Types: Java, COM, Corba, ...

object:
Both

Guest

Passenger

interface Guest {
checkIn ();
roomService();
checkOut ();

}

interface Passenger {
checkBaggage ();
board ();
deplane ();

}

interface Guest {
checkIn ();
roomService();
checkOut ();

}

interface Passenger {
checkBaggage ();
board ();
deplane ();

}
class Both
 implements Guest, Passenger {

// implementation ….
}

class Both
 implements Guest, Passenger {

// implementation ….
}

Hotel
Airline

Here is some Java code illustrating the point.

An interface is a distinct construct from a class, and a class can implement many interfaces.

12© ICON Computing http://www.iconcomp.com

12© ICON Computing

Component

❒ There are many definitions of component
• A user-interface widget that can be assembled on an interface builder

• An executable module with a specified interface

• A large-grained object with encapsulated persistent state and an interface

❒ All have the goal of software assembly

❒ An independently deliverable unit that encapsulates services behind a
published interface and that can be composed with other components
• Encompasses executable, module, and model/specification units

So, now that we know roughly what an interface is, what exactly is a component? Our definition, shown above, is
more general than most.

13© ICON Computing http://www.iconcomp.com

13© ICON Computing

Components need Precise Interfaces

❒ To build systems by “plugging” together components

?
certify and publish

• Two choices: “plug-n-pray”, or use better specifications that are:
– abstract: apply to any implementation

– precise: accurately cover all necessary expectations

“Type” spec
what is expected of
any “plug-in”

will work with...

is one implementation of...

If we are to realize systems by “plugging” together components that may be specified and built by differently people
in different parts of the world, we need clear specification of component interfaces. Otherwise we stand little chance
of realizing robust systems by assembly.

14© ICON Computing http://www.iconcomp.com

14© ICON Computing

The “Black-Box” Component

❒ Signatures are not enough to define widely-used components

Thingami

frob (Thing, int)
Thing fritz(int)

NuclearReactorCore

add (ControlRod, int)
ControlRod remove(int)

Editor

spellCheck()
layout()
addElement(…)
delElement(…)

Here are 3 different components. Would you use them as black-boxes?

Thingami: probably not, because you have no idea what any of it means.

Editor: well, this one seems more likely. We understand the words, and know what they mean. SpellCheck
corrects the spelling of words in the document, and layout probably figures out line and page breaks, and
positions of floating figures and tables.

Nuclear Reactor Core: well, we know what this one does, but are not likely to touch it!

In hiding the implementation of a component, we cannot make do with describing the interface simply as a list of
operation names. Instead, we must also provide some specification of the behavior guaranteed by those operations.

15© ICON Computing http://www.iconcomp.com

15© ICON Computing

Model-Based Type Specification - Example

• Type described by list of
operations

• All operations specified in terms of
a type model

• The Type Model defines
specification terms (vocabulary)
that must somehow be known to
any implementation

spellCheck()
layout()
addElement(…)
delELement(…)

Editor <<type>>

*

Element
preferredSize
position

Word Composite

*

*

dictionary

contents

type-model = vocabulary

every element has been positioned so that
its preferred size can be accommodated

every word in contents is correct
by the dictionary

We start with an empty “type” box. The UML stereotype <<type>> indicates that this box is an external abstraction
of any internal implementation. In particular, the middle section of the box, which is normally interpreted as stored
data, is now interpreted as abstract attributes. In the model above, the editor has two interesting abstract attributes,
contents and dictionary (that happen to be drawn as lines called associations). None of the elements in this section
need be stored, or directly represented in any way.

Here is how we go about specifying the type Editor:

List the operations

Informally specify each operation

Identify the hidden terms or vocabulary

Model this vocabulary as attributes (or inputs, outputs)

Attributes can be drawn

Attributes have types, which have attributes, …

Re-formulate the operation specs in terms of this model

Validate any implementation by mapping first to this model, then reviewing the operation code

A given implementation need not directly store contents or dictionary e.g. we may store the dictionary as a reference
to a file which is indexed by character prefixes. However, it would be hard to conceive of a correct implementation
of this specification which had nothing whatsoever that corresponded to the words constituting the dictionary. In
other words, every correct implementation of an editor must have something that can be mapped to the concepts of
the words in the dictionary of that editor. Re-stated yet once more, the type model must be a valid abstraction of any
correct implementation.

16© ICON Computing http://www.iconcomp.com

16© ICON Computing

But, What about Encapsulation?

❒ Encapsulation is about hiding implementation decisions

❒ It does not make sense to hide interfaces

❒ And interfaces always imply expected behavior as well

• This is what polymorphism is all about

❒ Hence, specify a minimal model of any implementation

What about polymorphism?? Are we not compromising that holy grail by describing attributes? Are we not giving
away too much in what should have been an interface specification?

Remember some basic points:

Encapsulation is about hiding implementation decisions, not about refusing to tell the client about the behavior
guarantees you do, and do not, make.

We already know that an interface specified merely as a list of operation names and signatures is really quite
inadequate for a client’s purpose. You have to describe behavior guarantees as well. The trick is to describe
these guarantees in a way that tells a client enough, but still permits many different implementations. This is
what polymorphism is all about -- specifying visible behavior without compromising implementation
alternatives.

Hence, we specify a type based on a minimal abstract model of how any valid implementation.

17© ICON Computing http://www.iconcomp.com

17© ICON Computing

Formalizing Operation Specs

❒ Operation specification can formalized
• OCL (Object Constraint Language) used after rectifying some shortcomings

• Checked, used for refinements, testing, change propagation, …

❒ Enables checkable/testable design-by-contract

Editor:: spellCheck ()
post // every word in contents

contents#forAll (w: Word |
// has a matching entry in the dictionary

dictionary#exist (dw: Word | dw.matches(w)))

Operation specs can be made as precise as appropriate, even to the point of being machine checkable. While this
may seem alien at the level of requirements -- where we are accustomed to being quite fuzzy about what we mean,
and to avoiding tricky issues under the guise of “oh, that’s a design detail” -- the discipline it enforces actually has
very tangible benefits.

One very concrete benefit is that tests are specified as an incidental side effect of writing a precise specification of
behavior. If, for any test case, this specified outcome did not result, then the test has failed the specification.

Of course, a given implementation may not have anything that directly represents contents and dictionary. However,
as we said earlier, it must have something that can be mapped to these attributes, even if it takes a complex function
to compute this mapping. If this mapping -- formally called an abstraction function or retrieval -- is written down in
the code, then the above specification becomes an executable test specification as well.

18© ICON Computing http://www.iconcomp.com

18© ICON Computing

Behavior vs. Data-Driven -- a Non-Issue

❒ A long-standing controversy: “should models be data- or behavior-driven”

❒ The approaches are resolved cleanly in Catalysis

❒ Behavior induces abstract attribute models

❒ Attributes support behavior specification

There has been a long-standing controversy about data-driven Vs. behavior driven methodologies. Certain methods
have been characterized as behavior driven (CRC, Booch, OBA, etc.), while others have been characterized as data-
driven (OMT, Shlaer&Mellor). Some object purists reject data-driven approaches on the basis that objects are
primarily about responsibilities and behaviors, and about hiding implementations. On the other hand, data-modeling
people find it hard to understand how considerations of data can be so thoroughly avoided (or deferred).

The Catalysis interpretation of attributes and "type-models" makes this controversy is largely irrelevant. The basic
reasoning is actually very simple, and follows this progression:

Pure behavioral "black boxes" still need their behaviors to be specified

Given an abstract model of attributes, behaviors can be described precisely

Abstract attributes do not represent data storage, or even public methods; just precisely defined terms

Attributes can be drawn visually as “associations” in "type models"

Abstract attributes can be parameterized

The type model provides a precise vocabulary for defining behavior contracts

Any collaboration requires mutual models

Models from multiple "views" may be composed

Collaborations may be refined in mutually interesting ways

Details on this are available on http://www.iconcomp.com/catalysis under the topic “Behavior- vs. Data-Driven
Methods”.

19© ICON Computing http://www.iconcomp.com

19© ICON Computing

But, Which Models Are “Right”?

• Type model
abstracts several
implementations

• Each model
element has
some mapping
from an
implementation

spellCheck()
layout()
addElement(…)
delELement(…)

Editor <<type>>

*

Element
preferredSize
position

Word Composite

*

*

dictionary

contents

spellCheck()
layout()
addElement(…)
delELement(…)

Editor <<interface>>

spellCheck()
layout()
addElement(…)
delELement(…)

Editor <<class>>

dictionary: Dictionary
currentDoc: DocID
otherDocs: Set<DocID>

select()
insert(…)
delete(…)

Document <<type>>

id: DocID
root: Tree<Element>
selected: Set<Element>

Of course, there are many possible type models that can support specifications of equivalent behavior. In fact, the
very fact that behavior can be specified in terms of an abstract model, and yet written in terms of a potentially
different implementation representation, requires this.

A good development process will prefer type models -- which are, after all, about external specification of behavior
-- that are based on concepts and terminology from the domain or business at hand.

20© ICON Computing http://www.iconcomp.com

20© ICON Computing

Attributes and State Models

❒ A state is a boolean attribute
• Attributes do not have to correspond to stored data

❒ State structure defines invariants
• Sub-states and “concurrent” sub-states

❒ Transitions define (partial) action specs

Person

single

married

rich

poor

Person

single, married: Boolean
rich, poor, broke: Boolean
inv single xor married
inv rich xor poor
inv broke implies poor

spouse: Person
inv married iff spouse <> nil

marry (other: Person)
 pre single & other.sex…
 post married & spouse = other & ...

broke

marry….

SDUWLDO�VSHF�RI

States are not a additional construct in Catalysis. Instead, a state corresponds to a boolean attribute: an object either
is, or is not, in a given state at any time. Recall that attributes do not have to correspond to stored data, or to
implemented public (or even private) methods, so long as there is some mapping from the implementation to each
attribute.

The structure of states on a state-diagram visually defines invariants on these attributes. Thus, separately drawn
states must be exclusive; nested states correspond to boolean implication: sub=>super.

There are usually additional invariants between “state” attributes and other attributes and associations. For example,
a person is in the married state if (and only if) he/she has a spouse.

State transitions drawn on a state-diagram define (partial) specifications of operations or actions. The complete
specification of any action is defined by some composition of all transitions that name that action as their trigger.

This gives state transition diagrams the same basis as all other modeling constructs in Catalysis, and enables better
integration and consistency checking.

21© ICON Computing http://www.iconcomp.com

21© ICON Computing

Component Models: Catalysis, TI, M.S. Repository

❒ Every component description consists of at least 2 parts
• The implementation (designed classes, modules, exe, etc.)

• The specification of the component interface(s) as Type(s)

type

operation
SPECIFICATION

Component XYZ

interface (Type)

EXECUTABLEIMPLEMENTATION

(Class)

Any packaging of a re-usable component must include not just the executable code, but also an interface
specification. Catalysis has influenced the component-description standards being used by Microsoft and TI
Software (now Sterling Software), through a collaboration between ICON Computing and Texas Instruments.

22© ICON Computing http://www.iconcomp.com

22© ICON Computing

Java Interfaces: which behaviors are OK?

interface awt.ListBox { // not exactly awt.List

// represents a list of items to be offered on a GUI
void addItem (Item, int);

Item delItem (int);
…

}

position?

position?

addItem
delItem

addItem
delItem

❒ Only some implementations are valid
• The signature-based interfaces does not specify which

Consider a simple Java interface shown above. The signatures alone do not adequately specify the required behavior
e.g. are items positions counted from the front or back? Starting at 0 or 1? What happens if I add at a position
beyond the current contents? What does add do to the item already at a position, if any?

23© ICON Computing http://www.iconcomp.com

23© ICON Computing

A common vocabulary relates operations

❒ Specification of operations uncovers a hidden vocabulary

• addItem (item, pos)
pos must be between 1 and current count + 1
the item has been inserted at position and is selected
all previous items from pos to current count moved up by 1

• delItem (pos)
pos must be between 1 and current count
the previous item at pos has been returned
all previous items from pos+1 to current count moved down by 1

As we write down a description of the effect of each operation we will find ourselves introducing a hidden
vocabulary i.e. a set of terms which are needed to describe the operation, but which are not themselves a part of the
run-time interface. As these terms are identified, we can start to define them more precisely, and to use the same
terms to uncover questions and describe other operations as well. Here is one possible discussion:

A: At what positions can I insert an item?

B: Any positions in the current range should work fine.

A: And what would that current range be?

B: It depends on how many items have been added to the list. You can insert anywhere from the start to the end of
that list.

A: So we could insert at position 1 upto (including) one past the last element. Could I describe that with the current
count of the list?

B: I suppose so. The count changes as you add or remove items.

A: What happens to the item which was already at that position?

B: Oh, it is moved up by one (along with all other items)

A: OK, so we can use move up and move down to help describe these operations?

.....

And so on, introducing new terms only when needed to describe operations.

24© ICON Computing http://www.iconcomp.com

24© ICON Computing

Model vocabulary formalized as “queries”

interface ListBox {

/* pseudo-java
model {

int count();
Item itemAt (int pos);
boolean selected (Item);

movedUp (i,j)
} */

void addItem (Item item, int pos);

Item delItem (int position);

…..

}

awt.ListBox

count: int
itemAt (int): Item
selected (Item): boolean
movedUp (i,j): boolean

addItem (Item, int)
Item delItem (int)
…..

Model “queries”
=“vocab”

= “notion of”

Interface

Note: The model “queries” do not represent an implementation!

Some terms can be defined in terms of others

e.g. movedUp can be defined in terms of itemAt(I)

The “vocabulary” used in specifying operations can be made formal using type-model attributes. Such an attribute
is best interpreted as precisely defined terms, or a hypothesized query. It does not need to be stored directly, or even
be publicly accessible, in an implementation. However, the client of a type, and the implementor of that type, had
better both agree to the definition of that term, and to how the publicly visible operations are related to the value of
that term.

25© ICON Computing http://www.iconcomp.com

25© ICON Computing

Type = Behaviors specified using Model

awt.ListBox

count: int
itemAt (int): Item
selected (Item): boolean
movedUp(i,j)

addItem (Item, int)
Item delItem (int)

addItem (Item item, int pos)
pre (0 < pos <= count+1)
post item = itemAt(pos)

and count = count@pre+1
and movedUp(pos,count@pre)
and selected(item)

&ILEZMSV�lGSRXVEGXz
you can rely on post-conditions
provided pre-conditions are met

interface ListBox {
model { }
void addItem (Item item, int pos)

 pre 0 < pos and pos <= count+1 // provided position is in range
 post item = itemAt(pos) and selected(item) // inserted and selected

and count = count@pre + 1 // count increased from before
and movedUp (pos,count@pre) // items moved up

prior value

aux. query

The operations can now be specified more precisely using the vocabulary provided by type-model attributes.

The precise syntax used here is not particularly relevant. With UML 1.1 and beyond, there is a standard syntax
based on the OCL (Object Constraint Language) which is used to write such specifications.

The above pre/post would be described in OCL as follows:

26© ICON Computing http://www.iconcomp.com

26© ICON Computing

Valid implementations of a Type

❒ Any valid implementation class
• Selects data members

• Implements member functions

• Can implement (retrieve) the model queries

• Guarantees specified behavior

awt.ListBox <<type>>

count: int
itemAt (int): Item
selected (Item): boolean
movedUp(i,j)

addItem (Item, int)
Item delItem (int)

addItem (Item item, int pos) {
items.insertAt(item,pos);
selection.add(item);

}

ListBoxA
items: List
selection: Set(Item)
addItem (Item, int)
Item delItem (int)

class

retrieval:
boolean selected(i) { return (selection.has(i));}
int count() { return (items.length()); } ….
Item itemAt(pos) { return items[pos]; }

<<implements>>

Of course, there are many ways of implementing a type. Each implementation will choose appropriate data
representations -- called instance variables or data members in most object-oriented programming languages -- and
will then code the methods or member functions corresponding to each operation in terms of that representation. We
have an implementation class written in terms of one set of instance variables, that claims to implement a type
whose operations were specified in terms of another set of abstract attributes. We need a mapping from the
implementation to the abstract specification, called a retrieval. In the diagram above, the client has, of course,
understood and agreed to the type. The implementor programmed the class. Here is the dialog from the Design
Review in which the class is being reviewed:

Client: Wait a minute, my specification was written in terms of count, items at different positions, and items
being selected or not. How can I review your design if I don’t even see them in your class?

Implementor: Well, there are actually all there. I have chosen to represent them differently so I could re-use the
class List, and also get the right space-performance we need.

Client: Where is count?

Implementor: Count corresponds to the length of my “items” list.

Client: So do I now need to look at the implementation of List?

Implementor: No. In fact, I don’t know the implementation myself, as I picked it from the library. However, it
does have a specification, and count is defined there consistently with what we need.

Note: the implementation itself relies on other types i.e. using their type models and specs

Client: What about selected(item) and itemAt?

Implementor: item is selected means the same as that item is in the selection set in my design

….And so on. A design review must justify these mappings, and the reasons for design choices.

27© ICON Computing http://www.iconcomp.com

27© ICON Computing

Implementation: Conformance and Retrieval

❒ A class implements an interface
• The interface defines its own model and behavior spec

• The class selects its own data and code implementation

❒ The class is a refinement of the type I.e. conforms to it
• It claims to meet the behavior guarantees of the type for any client

• A retrieval (informal or formal) can support the claim

• Implemented abstract queries (formal) can be used for testing

Interface

Implementation

retrieval

maps from refinement
to abstraction

The distinction between class and type is one example of the Catalysis concept of refinement I.e. the same thing
being described at two levels of abstraction, with a mapping from the concrete description to the more abstract one.
In the case of class vs. type, this mapping includes a mapping from the concrete stored representation chosen to the
abstract type attributes, and a corresponding justification (informal or formal) for the method bodies in the class
implementing the specified operation post-conditions on the type.

28© ICON Computing http://www.iconcomp.com

28© ICON Computing

The Power of Conformance/Refinement

❒ The notion of conformance and retrieval is very useful
• It permits flexible mapping between from refinement to abstraction

• It solves a very real problem:
– “I have just made some change to my code. Do I have to update my

design models? Do I have to update my analysis models?”

❒ Pick abstract model to conveniently express client spec
• Implementation model must have correct mapping to the abstract

• Encapsulates implementation without hiding specified behavior

❒ Even more powerful with temporal refinement
• The abstract level describes an abstract action

• The concrete level details an interaction sequence

• The retrieval establishes the mapping between the two

Refinement and retrievals solve a very real software engineering problem, specially in the face of today’s trends
towards iterative and incremental development cycles. Just because some system is being developed iteratively does
not decrease the value of abstract descriptions of that system e.g. design or requirements models.

Many OO developers like to draw pictures of their code: boxes for classes, attributes for data members, operations
for member functions, lines for inheritance or pointers between objects. While useful in a limited way, there is a
serious risk that all such diagrams will be interpreted as visual representation of code. As a result of this view, an
“analysis” model will be interpreted as a drawing of the code. When detailed decisions are made (or changed) in the
code, it is not clear which of the models need to be updated. Without a precise criteria for propagating changes
across levels of abstraction we have a maintenance problem.

As a result, either: (a) the cost of maintaining the models becomes too high, and the models quickly become obsolete
and “die”, or (b) the analysis models are reverse engineered from the code and lose their value as problem-centric
abstractions.

The value of refinements and retrievals will greatly increase as our repertoire of refinements increases. In particular,
Catalysis defines a basic set of refinements which include temporal and dialog refinements, model refinements,
signature and “connector” refinement, which cover several useful forms of abstractions used in practice.

29© ICON Computing http://www.iconcomp.com

29© ICON Computing

Complex Model Queries

❒ Complex behaviors use complex queries
• Sets, sequences, etc. of other types

• Related queries on other model types

PortfolioManager <<type>>
reportsTo: Person
wizards: Set(InstrumentWizards)
wizBestBuy(Wizard,Situation,Goal): Instrument
wizardPlan (wizard): Plan
projectedValue(Situation, Time): Dollars
….

updateChoices exists w in wizards | wizbestBuyFor (w,......

model=
queries=
“vocab”

interface

In the case of complex type models, we do not want to list long lists of complex and parameterized queries. Instead,
we will use a diagram form to express to same information.

30© ICON Computing http://www.iconcomp.com

30© ICON Computing

Complex models will be shown visually

❒ Model queries may be depicted visually as associations
• aPlan.situations: a sequence of situations

• plan.situations.projectedValue(11:00): a sequence of dollars

❒ The spec for updateChoices can hence utilize:
– reportsTo, plan, plan.situations, plan.situations.projectedValue(11:00),…

PortfolioManager <<type>>
reportsTo: Person

updateChoices

Plan
endGoal:Goal

Situation
projectedValue (Time):Dollarsseq *

InstrumentWizard
bestBuyFor (Situation, Goal)

wizards *

exists w in wizards | w.bestBuyFor (plan.situations.last..

situations

plan

model=
queries=
“vocab”

interface

And here is what a type-model diagram looks like. It is important to read these diagrams as abstract descriptions of
attributes of a PortfolioManager, defining terms that must be understood to understand the specification of
operations of that object. None of the constructs in the middle section of that box represent data stored, or methods
that must be implemented in any client-visible form.

However, as before, every correct implementation of this type must have some mapping to the concepts of wizards,
bestBuyFor, plan, endGoal, situations, projectedValue, etc.

31© ICON Computing http://www.iconcomp.com

31© ICON Computing

Outline

❒ Method Overview

❒ Component Specification - Types

❒ Component Design - Collaborations
❒ Component Architectures

❒ Refinements

❒ Business Example and Development Process

❒ Frameworks

We now know what it takes to specify an object or component externally as a Type.

The next section will show how such a type can be implemented internally as a Collaboration of several other
components.

32© ICON Computing http://www.iconcomp.com

32© ICON Computing

Component-Based Design

• Large component is a type for its external clients

• Implement it as collaboration of other components

• Specify these other components as types

• The child component models must map to the original model

Editor

E-Core
next word

replace word

maximum size
resize

children

Spell Checker

spellCheck()

Layout Manager

layout()
dictionary

words

Editor

spellCheck()
layout()
addElement(…)
delELement(…)

We must first partition the Editor into constituent parts that will be implemented separately, but must collaborate
with each other.

We choose to separate the spell-checking functionality, layout algorithms, and the core of the editor that maintains
its structure and provides access to it to the user, and to the spell-checker and layout-manager.

The spell-checker and layout-manager expect very different services from the core. All the spell-checker does is
request nextWord repeatedly, asking to replaceWord for any word it does not accept. The layout manager, on the
other hand, perceives the core as a hierarchical structure of graphical elements (including text), which it can
“modify” at certain points for purposes of layout e.g. to break a line or page, and to re-locate a floating table. The
operations it uses are quite different, and related to sizing and nested structure of tables, lines, words, etc.

Note some points about this design:

The terms in our original type model of an editor are now split across the designed components. The spell-
checker is the only one that has any concept of a dictionary. Both the spell-checker and the core have to
understand and exchange words. The layout manager probably also manipulates words, but really only treats
them as elements that contain sequences of child elements (characters), and that can be broken at certain
places for layout reasons.

Also, the core offers two interfaces to its collaborating components. Thus, we could well characterize this core
as two different types, one as seen by the spell-checker, and the other as seen by the layout manager. This re-
inforces a point we made much earlier; an object or component plays different roles with respect to different
collaborators, and exhibits different types to each.

33© ICON Computing http://www.iconcomp.com

33© ICON Computing

Reasoning for Component Partition

❒ In this particular example of Editor

• Spelling and Layout are quite orthogonal to each other

• Layout can be separated from the basic structure manipulation

• If we build a Spell Checker we can use it in lots of applications

• We can buy many spell checkers

• We can imagine many variations in layout policies

• Both are examples of the strategy design pattern

❒ Design the interface to make the separation effective
– Spell Checker sees “a sequence of replaceable words”

– Layout Manager sees “a nested structure of things to position and size”

Here are some possible reasons for the partitioning.

Our focus in this bit is not on the heuristics and guidelines for good partitioning, so we will keep this short. The
essential reasons in this case have to do with re-use, flexibilty, and buy-vs-build

34© ICON Computing http://www.iconcomp.com

34© ICON Computing

Each Component implements many Types

• Components offer different interfaces to each other

• Each interface has a different supporting model

• The implementation refines each interface spec

E-Core
SC LM

Layout Managermaximum Size
resize
children

E-Core(LM)

Elem
size

descendants *
Spell-Checker next word

replace word

E-Core(SC)

Word
seq *

curr

If we try to specify just the editor core, it exhibits two different types.

E-Core(SC): the editor core as seen by the spell-checker. The only two operations here are nextWord and
replaceWord. If we specify these two operations, we may end up with something like this:

nextWord: the current word position is moved forward by one word, and the word at that position is returned to
the spell checker. If there are no more words, null is returned.

replaceWord(replacement): the word at the current word position is replaced by the replacement.

If we try to make these two specs a bit more precise, we find that our vocabulary must define the concept of
current word position, and some concept of the sequence of words. Hence, our type model of the editor core
looks as shown in the figure on left.

E-Core(LM): the editor core as seen by the layout-manager. The operations here are maximumSize and resize and
children. If we specify these operations, we may end up with something like this:

maximumSize (element): the size of the element in question.

resize (element, size): sets the size of the element.

children (element): returns the set of children of the element.

If we try to make these specs a bit more precise, we find that our vocabulary must define the concept of size of
element, and some concept of the children of an element. Hence, our type model of the editor core looks as
shown in the figure on right.

Of course, anyone who implements an E-Core must implement both these types. Whatever representation it chooses,
it must be able to behave as though it was comprised of a sequence of words (for the spell checker), and behave as
though it consisted of a nested tree of sized elements (for its layout interface).

35© ICON Computing http://www.iconcomp.com

35© ICON Computing

Type-Based Components are “Pluggable”

❒ Any component that provides the correct interface
(operations and apparent type model) can plug-into another
component

SpellChecker

Spell Checkable

next Word
replace Word

Wordseq *

DB RecordE-CoreAcme Spell Bee

The entire reason for designing in terms of collaborating components with multiple interfaces is to provide more
flexible and de-coupled designs.

If the editor-core implements our SpellCheckable interface, it can plug into an correct implementation of the
SpellChecker type. This is because the SpellChecker type was specified to work with any object that implemented
the SpellCheckable interface. We should be able to plug in or out either Acme or SpellBee spell checkers.

More interestingly, are there other things besides an E-Core that we could spell check with any spell checker? Could
we spell-check a spreadsheet? A database record? An email message?

Yes! The only requirement is that any of these objects must implement the SpellCheckable interface i.e. they must
be capable of masquerading as though they consisted of a sequence of words.

This approach buys a tremendous amount of fexibility in the software architecture, if the interfaces are chosen
judiciously.

36© ICON Computing http://www.iconcomp.com

36© ICON Computing

Implement a Component using Others

❒ And we can now plug-in and out different dictionaries,
languages, ….

Spell-Checker

Acme Spell Checker Design

Checker-Core

Dictionary

lookup()
learn ()

Moby’s
Dictionary

And this component-based design continues recursively.

Thus, a SpellChecker may be built so it can use any implementation of a Dictionary.

37© ICON Computing http://www.iconcomp.com

37© ICON Computing

Large-Grain Business Components

❒ “Executable” component = large-grained object

❒ Components configurations tend to be more static

❒ One component may be built from several classes

❒ Underlying objects implement several types e.g. Customer

Shipper

ship (shipment, receiver)
shippingStatus (order)

Membership Manager

addMember (info)
findMember (name)
memberStatus (mem#)

Order Taker

takeOrder (product, buyer)
checkCredit (card#)
orderStatus (order#)

Customer

Order

Credit-Card

Money

A “component” can span many levels of granularity. In fact, even our legacy mainframe applications can be
considered components -- they were just not very easy to compose with other components, as the ugly solutions of
screen-scrapers and terminal emulators demonstrate.

In particular, medium to large-scale components can constitute entire business functions. These components tend to
be somewhat more static in their configuration and interconnection with other components, and each such
component will be built from the equivalent of several OOP “classes”.

These components will themselves implement multiple interfaces. Moreover, they will utilize underlying shared
objects, such as Customer, and will require different interfaces from that object itself.

38© ICON Computing http://www.iconcomp.com

38© ICON Computing

“Frameworks” as Components

❒ A large-grain component designed with “plug-points”

❒ Application will “plug” domain objects into plug-points

❒ “Plug-in” based on interface, sub-class, delegation, etc.

plug in
product shipment customer

Shipper
ship (shipment, receiver)

Order Taker
order (item, buyer)

plug in
product customer

Customer
receiver buyer

(supply return) (vendor) (service)

The most flexible components are “frameworks” i.e. components that provide the skeleton of some business or
application function, but do so in a manner which permits “plugging-in” of customization pieces to adapt the
component to a specific use.

The illustration shows how a Shipper component may be adapted to ship any Shipment to any Receiver. It can be
customized to ship product shipments to customers, or to ship returned supplies to vendors. Seemingly trivial, this
example is actually very typical of the unnecessary dependencies built into many legacy systems, in which it might
be an impossible task to use the same shipping component to handle both customers and vendors.

39© ICON Computing http://www.iconcomp.com

39© ICON Computing

Federated Components - The Virtual Enterprise

❒ Supply-chain and other cross-business federation enabled
• Build on internet or similar technologies

❒ Requires open distributed objects and components
• Demands supporting infrastructure standards and component re-use

Customer
(browser)

SupplierFactory

distributed objects and components

The scale and impact of collaborating components is most dramatically illustrated by internet technology. Not only
can components be federated across different business functions within the same company, but they can can be
extended (via appropriate security mechanisms) to components in the customer’s and supplier’s software systems as
well. The “virtual enterprise” is rapidly becoming a reality, based on underlying technologies of collaborating
components and distributed objects, with the appropriate infrastructure standards.

40© ICON Computing http://www.iconcomp.com

40© ICON Computing

Evolution of Component Interactions

❒ Mainframe (host) applications
• quite unnatural, not designed for this

host
host

screen scrapers,

terminal emulators

filter filter filter

❒ COM, Corba, JavaBeans, …
• tackles broader scope and issues

• interface-centric, distribution, services, discovery

❒ O.S., databases, inter-application communication
• essential support of “system services”

❒ Unix pipes
• effective but limited “connection” model

❒ C++ objects (or Smalltalk, ...)
• effective, limited scope, early OO mistakes obj

obj

obj
obj

m1() m3()

m2()

o.s. services

Just as a bit of perspective, consider how “components” have evolved over the past 40 years. It all boils down to
collaborations between components -- the essence of open and extensible systems.

In the beginning there was the mainframe. And we wrote monolithic host applications for the beast.

Unfortunately, these host applications did not make very good “component” citizens. Specifically, they were not
amenable to integration with other such components, for two reasons:

The component granularity itself was way too large. Re-use at this level of granularity is a long shot!

The components were written very specifically for input and output from a human via a dumb terminal.

As a result, we had to write fairly ugly pieces of code, with names like “screen-scrapers” and “terminal emulators”,
to fool the software components into thinking they were interacting with such a dumb terminal, while in fact
intercepting the traffic to route to another component.

Then came operating systems with services for inter-application communication, enabling the separating of
networking services, and of database servers from applications, and the entire client-server world was born.

In the Unix world, a particular component architecture was taking shape: the pipes and filters model. In this model,
each component (typically an executable unit) consumed and produced a stream of bytes or characters. Composing
components was a relatively simple matter of connecting their input and output streams together, with appropriate
“infrastructure” components for providing splits and joins of these streams. Elegant, but very limited.

Along came object-oriented development. The basic component unit here was an object, and component interaction
took place by explicit inter-object messaging. The model was fairly general, but was limited due to several
“mistakes” of early OO technology: language specific focus, lack of standard infrastructure services, lack of
attention to distribution, etc.

Today’s component technology takes us a step further, filling in many of the missing pieces in traditional OO
technology, while broadening the scope beyond language and distribution boundaries with infrastructure services.

41© ICON Computing http://www.iconcomp.com

41© ICON Computing

Are Components and Objects Different?

❒ Most components can be described as objects
• both emphasize encapsulation, interfaces, polymorphic late-bound connections

• most new components will be built from traditional objects inside

❒ So, what did traditional object-oriented development do wrong?
• undue emphasis on class and implementation inheritance rather than interfaces

• just one basic form of “connectors” -- explicit message invocations

• unfortunate language-imposed dependencies on class source code -- .h files

• boundaries such as host, programming language visible to components

• infrastructure services ignored -- persistence, transactions, security, discovery…

• component can be larger than a traditional single “object” or “class”

class

obj-2obj-1

host/language

obj-4obj-3

host/language

infrastructure services

Are components and objects different?

In a single word: NO!

All of today’s component technology can be described in terms of underlying interacting objects.

However, components have raised the bar for software construction in some important ways:

- they have changed the focus from classes and implementation inheritance to interfaces and composition

- broader model of “connecting” components from the traditional explicit method call of OOP, to more general
models including events and properties today, and even more general connectors in the future

- component technology typically crosses languages and distribution boundaries

- component technology pays more attention to standardization of infrastructure services that are common to all
applications

- they focus on somewhat larger-grained units of re-use than a traditional “object”

42© ICON Computing http://www.iconcomp.com

42© ICON Computing

Component Terminology

• Component: Software chunk that can be “plugged” together with others

• Connector: A coupling of a particular nature between ports of two components

• Port: The “plugs” and “sockets” of an individual component

• Component Architecture: (a) Standard port “connector” types and rules

• Component Infrastructure: (b) Standard services for components and connectors

• Component Kit: Components designed to work together with common architecture

• Packaging: Packaging of a component with associated specs, resources, tests, docs, ...

infrastructure services

components connector types

interface “ports”

Definition

Here is some terminology from component technology. This terminology is somewhat young, and is still in
evolution. Our definitions may be somewhat broader than that typically used in the popular press.

43© ICON Computing http://www.iconcomp.com

43© ICON Computing

Components generalize “Connectors”

• Events out of a component, or in to a component (triggering a method)

• Input properties that are kept in sync with output properties

• Workflow “transfers” where an object is transferred

• Replication -- where information is copied and kept in sync

• Standard objects and method invocation underlie all of the above

TVSTIVX]

SYXTYX�IZIRX

MRTYX�QIXLSH

COM,
Java Beans

ButtonButton

ButtonButton reactor

ThermometerThermometer ThresholdThreshold

OROR

ThresholdThresholdDifferentiatorDifferentiator

slider

pressed

start

start

stop

pressed

<<physical>>

position

limit
value in

value

in
gradient

in

out

out
in1

in2

out
AlarmAlarm

in

This example illustrates how component technology provides for more general forms of “connectors” between
components than simple explicit method invocations.

The figures shows examples of output events in one component being linked to input methods to invoke on another
component, as well as examples of properties linked across components.

44© ICON Computing http://www.iconcomp.com

44© ICON Computing

Why Components?

❒ A economically and technologically practical way to
organize and package an object-oriented (or other) system

❒ Developed, marketed, and maintained on a component basis

❒ Support capabilities that are impractical for “small” objects
• Interfaces accessed through different programming languages

• Components interact transparently across networks

• More cost-effective to maintain since they do more than “small”
objects, and less than “monolithic” programs

❒ Each component could itself be a candidate “product”

❒ Component partitioning enables parallel development

One may well ask: what is the fundamental difference between an object and a component?

The basic answer is None.

However, historically, objects have focused on purely business-domain concepts and their interactions with each
other via message passing, and have not identified larger-grained components like Shipper and OrderTaker. Object
technology also initially went overboard in using class inheritance as a mechanism for code-reuse, sometimes at the
cost of identifying narrow interfaces for collaborations between pieces, and at the cost of unnecessary coupling
between superclass and subclass.

On the other hand, component enthusiasts emphasize interfaces more strongly. Components can often be larger-
grained than traditional objects, although most of these components can themselves be considered to be (singleton)
objects. Thus, traditional OO could well have numerous instances of object types like customer, product, and order
interact to provide all the functionality of order-taking, membership management, and shipment, without using
objects like the singleton order taker or shipper.

The nature of the connector between components is frequently richer than for traditional objects. In most OOP
languages, objects interact exclusively by messages -- an unfortunate term, which actually means a synchronous
invocation of a method on the target object. However, it it frequently useful to consider richer kinds of connectors
e.g. a property of one object may be directly connected to a property of another, always keeping them in sync.
Alternately, an event in one object may be connected to a method in another, causing that method to be invoked each
time that event occurs. While all these are likely implemented with method invocations at the lowest level, they can
modeled more effectively as a different kind of architectural connector than straight method calls.

Those with strong experience in building host-based monolithic systems and transitioning to components, frequently
miss the collaborative nature of components, and the fact that even large-grained singleton objects need, at the
lowest level, finer grain objects like customer and product.

45© ICON Computing http://www.iconcomp.com

45© ICON Computing

Outline

❒ Method Overview

❒ Component Specification - Types

❒ Component Design - Collaborations

❒ Component Architectures
❒ Refinements

❒ Business Example and Development Process

❒ Frameworks

We have seen how a component can be externally specified as a Type, and how its internal design is a Collaboration
of other parts.

This section shows how the basic idea of an object of component having multiple interfaces leads to a fundamentally
different approach to architecture, in which the architectural elements are actually patterns of collaborations that
realize specific services.

46© ICON Computing http://www.iconcomp.com

46© ICON Computing

Interfaces lead to Collaboration Design

❒ An object offers a different interface in each role it plays
• Related objects talk through related interfaces

❒ Interface-centric design makes us focus on collaborations
• A collaboration defines related roles and interactions

• Provides excellent basis for composing patterns / architectures

Composition of 1+2

Passenger Guest

Guest

Collaboration 2Collaboration 1

Passenger

First for a quick review…

We start with the “objects 101” version of an object, the kind you see in a David Taylor book for managers. It looks
like a little jelly donut: “I am a well behaved object, this here inside is my data and no one else can see it; this
surrounding it is my services that others can access”

The first thing we recognized was that an object offers different interfaces to different collaborators. We sliced the
outside of the jelly donut into smaller sectors, as shown above. The object in the center could be a Person with an
interface for being a Passenger on an airline, and one for being a Guest in a hotel.

The next question is: who would be interested in the Guest interface of a Person? Probably not the Airline.
However, the hotel is interested. In fact, the hotel itself also plays other roles, such as an Employer role with respect
to its staff, and a Taxpayer role with respect to the tax authorities. These other “faces” of a hotel have no interest in
the guest role of a person. Hence, it is the BoardAndLodge of the hotel that works together with the corresponding
Guest interface of a person.

Similarly for the Passenger interface of a person, and the TravelProvider interface of an airline.

Hence, these interfaces and types belong in groups. The most meaningful design units consist of
Guest+BoardAndLodge, rather than just Guest in isolation i.e. our design elements are packages of interfaces!

On a more subtle and advanced note, a single object could provide both the TravelProvider and the BoardAndLodge
interfaces for a single person -- consider a luxury ocean liner that ferried passengers before the advent of airplanes.
It would still be true that the TravelProvider portion would care about the Passenger interface, while the
BoardAndLodge portion would care about the Guest interface.

(no offence implied; Dr. Taylor’s 2nd edition makes very good reading, and the 1st was a good overview)

47© ICON Computing http://www.iconcomp.com

47© ICON Computing

Recap - Our Collaboration Design

• Large component implemented as collaboration of components

• The design can itself be factored into 2 partial interactions between roles

Editor

Editor

E-Core
next word

replace word

maximum size
resize

children

Spell Checker

spellCheck()

Layout Manager

layout()

Well, what kinds of architectural elements have we used in our design of the Editor?

To refresh your memory, here is the partition we came up with: spell checker, editor core, and layout manager.

There are two distinct collaborations here, one to provide the spell-checking service, and the other for layout
management.

48© ICON Computing http://www.iconcomp.com

48© ICON Computing

Collaborations as Architectural Units

❒ A collaboration is an architectural package that contains:
• a set of related interacting types

• characterized by set of interfaces with behavior specifications

package patterns.SpellCheck;

interface SpellChecker {
void attach (target: SpellCheckable);

void spellCheck ();

}

interface SpellCheckable {

Word nextWord ();

void replaceWord (replacement: Word);

}

Collaboration

A collaboration is an architectural unit or package that contains a set of related interacting types, characterized by
the appropriate types (interfaces with behavior specifications).

This slide shows some Java code for the spell-checking collaboration (well, pseudo-Java).

The package,called patterns.SpellCheck simply to emphasize that this is a design pattern for implementing spell
checking in any application (and to set the stage for an upcoming discussion), contains two interfaces:

SpellChecker: any object playing this role must be able to attach to a target that provides the SpellCheckable
interface, and then to spellCheck that target.

SpellCheckable: any object playing this role must be able to provide sequential access to the words it contains,
and to replace the word at the current position in that sequence.

Note that this package is purely a design description. It contains no implementation code at all. If we wanted, we
could provide a default implementation class for each of these interfaces. We would most likely put this default
implementation into a separate package. A particular implementation could decide whether or not to use that default
implementation; if it did not, it could still implement this design pattern.

49© ICON Computing http://www.iconcomp.com

49© ICON Computing

Composing Collaborations

• Defines effective ways of using and reverse-engineering patterns

SpellCheck

SpellCheckableSpellChecker

LayoutManagement

LayoutManagerLayoutAble

Editor-Structure

E-Core

the two collaborations work together through the Editor

LayoutManagerSpellChecker

The spell-check design pattern simply describes one design for one service. But, of course, no application consists
simply of spell-check. An editor would provide operations for open, edit, save, in addition to spell check. An email
application would provide reply, send, delete, … in addition to spell check.

Thus, each application utilizes several design patterns, composed and mutually interacting in ways unique to that
application.

In our editor, we utilized two distinct patterns: one for spell check, the other for layout management. Each of these is
an architectural element, described in its own package.

The Editor package could be defined as a composition of these two patterns. Specifically, the editor core plays a role
in each of these patterns, implementing one interface for each.

Although each pattern was described independently of the other in separate packages, the collaborations are no
longer independent when composed in the editor application. For example, when spell checking a document, we
may replace a short word with a longer one. This may trigger some changes in layout, and cause re-computation by
the layout manager.

All this means that when we describe and compose patterns, we must also provide more “open” ways to hook them
into other patterns when composed, so that effects in one can have effects on other as-yet-unknown collaborators.

The most interesting result of this slide is that the architecture of a component-based design is captured by the
collaborations that have been applied or composed in it. Documenting a design means documenting the patterns of
collaborations that have been used in it.

50© ICON Computing http://www.iconcomp.com

50© ICON Computing

Composing Collaborations - Recursively

Record Persistence

StoreStorable

Layoutable-and-Spellable

S-L LayoutManagerSpellChecker

DB-Record-with-Layout-and-Spelling

S-L LayoutManagerSpellChecker

Store

❒ Leads us to interface-rich designs and design composition

The composition of patterns continues recursively.

Suppose we wanted to build a data-base system that supported persistent database records (naturally!), but also
allowed for spell-checking and automatic layout of the contents of a records e.g. smart line-breaks and indents of the
fields.

We could re-use the combined pattern of spell-checking and layout-management from our editor -- except, of
course, we would probably use its design, as opposed to the E-Core class that implemented editor-specific structure
and operations.

We could combine this with a bare-bones Persistence pattern, which required two types for its two roles: Storable
(the things that must be stored), and Store (the medium, file, database, …) that it will be stored in. The composition
of these patterns is shown in the slide above.

This example used very service-specific patterns. As we will see, service-independent patterns emerge when we
abstract away certain application specifics.

51© ICON Computing http://www.iconcomp.com

51© ICON Computing

Collaborations as Design Patterns

❒ An object offers a different interface in each role it plays
• Related objects talk through related interfaces

❒ Generic collaborations often represent design patterns
• Can be defined as sets of interfaces in a Java package

• In Catalysis, augment with behavior model

observer-subject proxy-remote

collaboration object

interface

The now-classic work of design patterns in the Gang-of-Four book by E. Gamma et al, consists largely of
collaborations that effectively solve design problems, abstracting away from the domain-specific characteristics.

The slide above shows how two common patterns -- Subject-Observer and Proxy-Remote -- could actually be
composed together in an application. The object in the middle is playing two roles:

subject: with respect to some other object acting as its observer

proxy: with respect to another object acting as the remote

These patterns can also be characterized as collaborations in Catalysis. Some of them, however, will need the
additional expressive machinery of Catalysis frameworks to abstract away the domain specifics without a loss of
precision.

52© ICON Computing http://www.iconcomp.com

52© ICON Computing

Code-level Collaborations: Java Packages

❒ A collaboration is:
• a set of related interacting types

• characterized by a set of interfaces with behavior specifications

package patterns.Observation;

interface Observer {

void update (Subject s, Object changeInfo);

}

interface Subject {

void register (Observer o);
void deRegister (Observer o);

}

The Subject-Observer design pattern would appear in Java in a single package, much like our earlier SpellCheck
service pattern appeared in a package. It contains the interface definitions for the two roles.

In Catalysis, these could additionally have behavior specifications attached to them, to capture the required behavior
and interactions between the objects playing these roles e.g. when does a subject invoke the update method on its
observers?

53© ICON Computing http://www.iconcomp.com

53© ICON Computing

Composing Collaborations

• Defines effective ways of using and reverse-engineering patterns

• Can use Java packages for modularizing collaborations

Subject-Observer

SubjectObserver

Proxy-Remote

RemoteProxy

Remote-Subject

RemoteSub-ProxyObserver

invariants relating two parent collaborations & models

proxysubject

And, of course, these kind of design patterns can also be composed.

This particular composition forms the basis for (some part of) 3-tier architectures. The UI elements act as the
observers of the domain objects, which are their subjects. These domain object, in turn, are actually proxies for the
data itself, which is represented by some objects across the network resides on the 3rd tier in some database.

54© ICON Computing http://www.iconcomp.com

54© ICON Computing

Class Instances play Roles in Collabs

❒ Instances of a class play multiple roles

❒ The roles are characterized by interfaces in collaborations

❒ Java packages can exploit this (but lack “generics”)

package myApplication;

import patterns.Observation.*; // patterns.Observation(Order)
import patterns.Distribution.*; // patterns.Distribution(OrderData)

class Order implements Subject, Proxy { …… }

class OrderWindow implements Observer { …… }

class OrderData implements Remote { …… }

Here is some Java code for objects that implement a 3-tier architecture in a very explicit manner, importing the
architectural patterns involved, and implementing the interfaces required by those patterns.

The class Order forms the middle-tier. The OrderWindow forms the client-tier or UI. And the OrderData forms
the 3rd tier on the database server.

55© ICON Computing http://www.iconcomp.com

55© ICON Computing

Code-Level Collaboration Composition

❒ We can carry role-structures into the implementation
• A role-object for each role played

• Design rules for dealing with (split) object-identity issues

• Each role-object implements its part of its framework spec

• A shared object for the “real” object

• Uniform observation or notification mechanism between the two

shared state

role objects implemented (with local state)

collaboration

Our examples so far illustrate the composition of design elements i.e. pure interface descriptions of collaboration
patterns. They did not, so far, discuss the reuse of implementation code.

One way to reuse code is to:

Implement a class for each role in a collaboration. Design each role object so it expect to be “plugged into”, or
connected to, a “real object” whose role it will represent.

When these roles are “overlaid” on a single object in an application, due to composition of collaborations,
represent that “single” by a group of objects:

One “central” object that represents the domain abstraction of interest

One “role” object for each role that domain object is supposed to play in each collaboration. This role
object is an instance of the class that implements just that one role in its collaboration.

All the role objects share the same domain object. Interactions between role objects take place mostly
through the shared state of this domain object.

56© ICON Computing http://www.iconcomp.com

56© ICON Computing

Design Styles for Code Components

❒ Components can be composed together

❒ Each component should define
• Abstract attributes which can be read and set

• Services which can be requested from that component

• Services required from other connected components

• Changes (“events”) that component is capable of notifying

❒ The last two are problems
• Traditional object descriptions only focus on services provided

methods
properties

events

To re-use implementation code when programming with components, we need to be able to compose that code when
we compose collaborations.

Of course, all the normal machinery of classes and inheritance is available when designing with patterns. However,
there is one problem. The clases for one collaboration are design independently of the classes for another. When the
collaborations are composed, however, and we end up with a single object playing a role in more than one
collaboration, there must invariably be some interaction between the collaborations.

How will the interaction take place, if all the framework classes for each collaboration were defined without
knowledge of other collaborations?

This problem actually highlights one of the shortcomings of traditional OO design. Its focus was mostly on the
incoming requests that an object can service i.e. the messages on its interface that could be invoked by another. It
did not explicitly consider, or document, its outgoing requests i.e. either the services it required from others in order
to properly provide its function, or the events that it was capable of raising so that other interested objects could
respond as they needed.

In order to facilitate better composition of collaboration implementations (and, incidentally, this also helps with
composition of the specifications of each collaboration), component standards have moved towards a more explicit
description of the events a component can raise. That way, when two components that each implement a role in two
different collaborations are composed together and should act like they were one object, each one can raise events
that the other can respond to.

Catalysis provides very effective ways to specify events raised as part of a component type specification, and to
compose components more conveniently using these events. In addition, it allows for much more general forms of
connectors between components, in addition to today’s emerging standards of properties, methods, and events e.g.
connectors for workflow, transactions, replication, pipelines, etc.

57© ICON Computing http://www.iconcomp.com

57© ICON Computing

Component “Events” e.g. Java Beans

❒ An event is an interesting change you can subscribe to

❒ Events grouped into event channels by Listener interfaces
interface BalanceListener extends java.util.EventListener {

void overdrawn (BalanceEvent);

void balanceOK (BalanceEvent);

}

❒ Bean may offer different event channels

❒ Standard convention for registering event listener:
void addBalanceListener (BalanceListener f);

void removeBalanceListener (BalanceListener f);

Account
Bean

Balance event channelUsage event channel Balance
Listener

Usage
Listener

Java utilizes a particular style for documenting and using events in its JavaBeans standard for components.
Although Java, the language, is still a normal OO language, focused on incoming requests rather than outgoing, this
style effectively addresses the shortcoming.

Suppose we were building a component that represented a bank account -- we will call it our AccountBean. The
basic steps are as follows.

Identify the interesting events you will raise: e.g. balance became overdrawn, balance became OK, account is
seeing excessive activity, account has become dormant

Group these events into separate “channels”, based on different clients probably being interested in different
subsets of these events:

overdrawn, balanceOk: an account-balance event channel

hyperActive, dormant: an account-activity event channel

Document each channel using an EventListener interface i.e. anyone who wanted to listen in on that channel
had better expect those events, so had better implement that interface

interface BalanceListener { void overdrawn (BalanceEvent); void balanceOK (BalanceEvent); }

interface ActivityListener { void hyperActive (ActEvent); void dormant (ActEvent); }

Provide an add/remove pair of methods to the AccountBean for each channel, for listeners to “tune-in” and
“tune-out”

addBalanceListener (BalanceListener); removeBalanceListener (BalanceListener)

addActivityListener (ActivityListener); removeActivityListener (ActivityListener)

58© ICON Computing http://www.iconcomp.com

58© ICON Computing

Outline

❒ Method Overview

❒ Component Specification - Types

❒ Component Design - Collaborations

❒ Component Architectures

❒ Refinements
❒ Business Example and Development Process

❒ Frameworks

This section will introduce the concept of Refinement as used in Catalysis.

Refinement is a very central concept. Much of software development can be considered to be the production of
descriptions that are refinements relative to things produced earlier (top-down development), or that are abstractions
of things produced earlier (bottom-up development).

59© ICON Computing http://www.iconcomp.com

59© ICON Computing

Class Vs. Type -- A Basic Refinement

❒ Any valid implementation class
• Selects data members

• Implements member functions

• Can implement (retrieve) the model queries

• Guarantees specified behavior

awt.ListBox <<type>>

count: int
itemAt (int): Item
selected (Item): boolean
movedUp(i,j)

addItem (Item, int)
Item delItem (int)

addItem (Item item, int pos) {
items.insertAt(item,pos);
selection.add(item);

}

retrieval:
boolean selected(i) { return (selection.has(i));}
int count() { return (items.length()); } ….
Item itemAt(pos) { return items[pos]; }

ListBoxA
items: List
selection: Set(Item)
addItem (Item, int)
Item delItem (int)

class
<<implements>>

We have already seen how a class is a refinement of a type.

The type abstracts away many representation and algorithmic choices. It expressed operations abstractly in
terms of their net effect (pre/post conditions) on abstract representation attributes. The class selects instance
variables, and writes methods to manipulate those instance variables and implement the operation specs. A
design review must justify the mappings from class representation to type attributes to defend the
implementation Vs. the spec, and the reasons for design choices.

60© ICON Computing http://www.iconcomp.com

60© ICON Computing

Beyond Subclass vs. Subtype

❒ Subtype vs. subclass: a much discussed distinction
• Type defines a set of objects by their behaviors

• Class defines interface and implementation of type(s)

• Subtype defines a subset of a type by their behaviors

• Subclass inherits interface and implementation

• Both focus on behavior of an object

❒ But most interesting designs involve multiple objects
• Roles, relationships, and interactions define architecture

• Many design decisions involve and affect multiple objects

Designs and architectures involve multiple objects and their interactions. No amount of discussion and
sophistication with regards to classes, subclasses, types, and subtypes will help us directly in describing, composing,
and refining architectural aspects.

61© ICON Computing http://www.iconcomp.com

61© ICON Computing

Subtypes and Refinements

❒ Sub-types refine (and retain) guarantees made by super-types
• The concrete implements, and can retrieve to, the abstract

• Any sub-type implementation meets all super-type behavior guarantees

• Clients remain blissfully unaware of any change

❒ Here is a common refinement: is it a sub-type?

Editor-1-Step

delete (Shape)

Editor-2-Step

select (Shape)
deleteSelection()

refine the protocol

Consider the two descriptions above:

Editor-1-Step: at an early stage in requirements for an editor, we decide that it must support deletion of a shape.
We document a type with the appropriate operations. We might even formalize this operation with a spec,
and a supporting type model.

Editor-2-Step: later in the development cycle, we decide that shape deletion will not be supported as a single
operation. Instead, the target shape must first be selected, and then deleted in a separate operation.

Clearly, the latter is a refinement of the former. Is it a sub-type?

Remember that a sub-type implies full substitutability i.e. any client who expected the super-type and its interface,
should be able to use an object of the sub-type transparently i.e. without any change to the client.

The answer is no. Editor-2-step does not support the protocol of Editor-1-Step. Sure, it permits effectively the same
things to be done, but the protocol is different. And, the client has to be aware of this change.

62© ICON Computing http://www.iconcomp.com

62© ICON Computing

Refined Models and “Retrieval”

❒ Finer grained interactions induce a finer grained model

❒ Retrieve: Define abstract query in terms of refined model
• Define refined sequences that achieve each abstract action

❒ Still, this is not a sub-type

contents1-step= unselected2-step + selected2-step

select2-step (s) + deleteSelection2-step () => delete1-step(s)

Editor-1-Step

delete (Shape)

Editor-2-Step

select (Shape)
deleteSelection()

Shape

Shape

notSelected

selected

*

*0,1

0,1 0,1

contents

We may even formalize the operations at each level of refinement:

Editor-1-Step: to express the delete(shape) operation, all we need is an attribute which describes the contents of
the editor at any time. The result of delete is that the parameter shape is no longer in those contents.

Editor-2-Step: to express deleteSelection() we need a concept of what was last selected, so we can say it is no
longer in the contents. We add the attribute selected (drawn as as association here). We also have an attribute
notSelected, indicating all other shapes. The select(shape) operation simply sets the selected attribute.

We can now formalize the operations in terms of these attributes.

We can even map (“retrieve”) between the attributes. The contents attribute in the abstract version corresponds to
the unselected + selected attributes in the detailed version (more properly, we would be manipulating sets here). We
can hence argue that a sequence of select + deleteSelection achieves the same result as a single deleteShape in the
abstract version.

Still, Editor-2-Step is not a sub-type of Editor-1-Step!!

63© ICON Computing http://www.iconcomp.com

63© ICON Computing

Non-Subtypes: Varieties of Refinements

❒ Many common refinements do not create sub-types
• Time granularity, signature, helper objects, ...

Editor-1-Step

delete (Shape)

Editor-2-Step

select (Shape)
deleteSelection()

Editor-with-Mouse

click (Point)
deleteKey()

Here is that idea stretched a bit further, with yet another refinement. These are not editor sub-types.

In these examples, both the editor and the editing-client are affected by the refinement i.e. a multiple-object
refinement.

What construct does Catalysis use to describe a multiple-object interaction?

64© ICON Computing http://www.iconcomp.com

64© ICON Computing

Editor-2-Step

Joint Refinement of Collaborations

❒ We refined the joint interaction protocol, or Collaboration
• Both sides are affected by the refinement

Collab-A

Editor-1-Step

Collab-B

joint-model, invariants, action specs

joint-model, invariants, action specs

retrieval: statechart
 maps action sequences
also map attribuets

selectB

deleteSelectionB

deleteA

The unit being refined here is the Collaboration. Both parties are affected because the protocol is being refined.

The mapping from concrete to abstract must have two elements:

A mapping of attributes: for each abstract attribute, what (composition of) concrete attributes realizes that
attribute? This can be described textually, formalized using OCL.

A mapping of actions: for each abstract action, what sequences of concrete actions realizes that action? This is
often documented with a state-chart, or with a sequence diagram.

65© ICON Computing http://www.iconcomp.com

65© ICON Computing

Collaboration

Editor-1-Stepa

external invariants, action specs

collaboration

model

action (joint or localized)

typed role

Collaboration:
A set of actions between typed objects playing certain roles,
specified in terms of a common model. The actions themselves
may be joint (not assigned to a particular type) or localized
(responsibility assigned to a particular type), and may be external
(not between collaborators, must maintain invariants) or internal
(between collaborators, does not have to maintain invariants).

external actionspecs, constraints

Collab-A

b

And here is how a collaboration is defined in Catalysis.

66© ICON Computing http://www.iconcomp.com

66© ICON Computing

Scenario and Sequence Diagram

❒ A scenario is a trace through a collaboration

❒ Action pre/post attribute values are “snapshots”

❒ Snapshots conform/define type model

❒ Snapshot-pairs conform/define action specs

❒ Scenarios conform/define collaboration specs

sequence diagram

2EVVEXMZI
1. user does ….

2. system does …

3. database does …

A scenario in Catalysis is a trace through a collaboration. It is usually described in narrative form that tells a story
about an interaction, and may have an accompanying sequence diagram to illustrate the interactions involved.

Scenarios and sequence diagrams are an important tool to flesh out requirements. However, it is not possible to
exhaustively cover all scenarios. They must be accompanied with the more complete operation-specs and type
model with invariants to cover the general cases.

Scenarios help with defining the type model:

For each operation invocation on the system of interest, sketch out a before/after snapshot of objects (instances)
to explain the effect of that operation invocation, assuming a certain prior state. The before/after
configuration of objects in a snapshot pair describe the state change of the system; other outputs produced are
also described.

The combination of all such snapshots must be covered by the type model of the system i.e. the type model
generalizes all snapshots, admitting all legal ones, and prohibiting all illegal ones.

Scenarios help define operation specs:

For each operation invocation on the system of interest, the before/after snapshot pair describes the state
change of the system, and other outputs are produced. The operation spec should cover all possible snapshot
pairs i.e. it generalizes all operation invocations in all legal pre-states.

67© ICON Computing http://www.iconcomp.com

67© ICON Computing

Subject-Observer Collaboration

Observation

Observer
isProjection(Subject): boolean

update() spec
 post isProjection(sub);

Subject
s: State
inv changed(s)=>
 forall obs,
 obs.update(self)

 register()
 unregister()

observers

sub

inv forall s: Subject, obs in s.observers =>
obs.isProjection(s)

externally: subject-observer are always synchronized

abstract query

*

Many design patterns are best understood as abstract collaborations.

Design patterns, though abstract, should still be expressed with some precision.

This slide shows an example how:

Every subject has a state attribute, s. We don’t really know much about the type of s, except that something
special happens when s changes.

Whenever s changes, every observer of that subject has been updated

Every observer has its own concept of being “in sync with” its subject. We don’t know what this definition will
be for different observers, so we abstract it with a boolean attribute isProject (Subject).

Every observer will provide an update method. We don’t know exactly what each update implementation will
do, but we do know that it must achieve whatever is the corresponding definition of isProjection.

When I apply this collaboration to a particular problem domain, with unique kinds of subjects and observers, am I
creating sub-types of subject? Sub-types of observer?

68© ICON Computing http://www.iconcomp.com

68© ICON Computing

“Specializing” Subject-Observer

❒ Do not confuse this with subtype or subclass
• The entire family of related types (playing roles) is being specialized

• Will be addressed by “frameworks”

Power-Switch-Display

PowerSwitch
isOn: boolean

queryState()

SwitchDisplay
isRed: boolean

setColor

Observation

TextDisplay

TextBuffer
contents: Text

queryText()

TextWindow
display

showText

hh

isProjection == is text the same? isProjection == sw.isOn <=> disp.isRed

Our answer is No.

Supposed we had two applications of this pattern:

A text window displays pixels that must be kept in sync with the Text contents of a text buffer.

A switch display shows a color that is kept in sync with the corresponding state of a switch.

Are the two observers interchangeable? Could you use the text window unchanged as an observer for the power
switch? How about the switch display to observe the text buffer?

Clearly, text window and switch display are not subtypes of Observer; nor are text buffer and power switch subtypes
of subject.

Instead, the pairings of these types constitutes a refinement of the subject-observer collaboration i.e. both parts must
be mutually compatible when refined.

We will show later how Catalysis frameworks provide an even more powerful way to deal with this.

69© ICON Computing http://www.iconcomp.com

69© ICON Computing

Forms of Conformance and Refinement

• Several very useful forms of refinement
– Action to protocol of finer interactions

– Object to collaboration of other objects

– Type and model to class and instance variables

– Signature refinement

Collaboration

Type

operation 1()
operation 2()

Catalysis provides a core set of refinements, that can once again be combined and composed in very many ways.
These include:

Collaboration refinement: the protocol or signatures are being refined in a way that affects multiple participants
in the collaboration.

Type refinement: a single object type can be refined by a more detailed model, in a way that does not affect
clients at all. e.g. a class implementing a type.

Type decomposition: a single object type is designed as a collaboration of finer grained object, in a way that
does not affect clients at all.

70© ICON Computing http://www.iconcomp.com

70© ICON Computing

From Use-cases to Code (and Back)

❒ Collaborations and refinement provide full traceability
• Use-cases at the level of system and user-tasks

• Refinement of interaction granularity, external and internal roles

❒ Clear semantics for use-case development, business to code

System-Context

System

Refinement-number-N

System

The foundation of Refinement and Collaborations provides Catalysis with a well-founded basis for development
using Use-Cases. Use-cases are a nice technique for focusing on user-tasks, and refining these tasks down to code.
Unfortunately, almost all accounts of use-cases suffer from a lack of precise definition and meaning, and even use-
case “experts” are often hard-pressed to justify why they do certain things, and what the real meanings of “extends”
and “uses” are in structuring use-cases.

In Catalysis, a use-case starts off being a single abstract action. It has some participants (possibly more than 2), and
has a post-condition. There may be many possible sequences of interactions that realize that post-condition, and they
are not an intrinsic part of this abstract action. There are a corresponding set of attributes that support the expression
of this post-condition.

The abstract action is subject to refinement. We may refine it by:

Refining the interaction protocol, while keeping the same participants. The attributes are necessarily refined,
and map to the abstract attributes. Sequences of concrete actions map to abstract ones.

Refining the participants themselves. What was treated as one “system” object in the abstract action, may
actually be comprised of several smaller objects, without any “real” object for the system itself. The
corresponding attributes are changed, and map to the abstract attributes. Typically, the actions are also
refined at the same time.

Introducing new participants and helper objects. These act as intermediaries, or provide new aspects to the
actions that may not have been a required part of the original abstract action spec.

Of course, since use-cases fit into a more general framework of actions, collaborations, and refinement, they can be
structured with very well defined interpretations of “extends” and “uses”.

71© ICON Computing http://www.iconcomp.com

71© ICON Computing

Outline

❒ Method Overview

❒ Component Specification - Types

❒ Component Design - Collaborations

❒ Component Architectures

❒ Refinements

❒ Business Example and Development Process
❒ Frameworks

This section will step out of the realm of software, and show how the concepts in Catalysis are equally applicable to
the modeling of businesses.

72© ICON Computing http://www.iconcomp.com

72© ICON Computing

Collaboration - Business Model

• Collaboration: a set of related actions between objects

• Actions and objects can be business processes and roles

• Each action has a specification and model of types

Buyer

Seller

Purchasing

purchase

return

spec: buyer has received
goods from seller, and has
paid for them

spec: ……

A collaboration applies easily to any business process that can be described as an abstract action.

This collaboration shows two abstract actions, purchase and return, involving two roles/types: buyer, seller. These
actions have a spec, and some attributes on buyer, seller, (and product, item, money, etc.) to support the action
specification.

73© ICON Computing http://www.iconcomp.com

73© ICON Computing

Business Refinement

❒ A relation and mapping from a detailed to an abstract
description of the same phenomenon

Buyer
Seller

purchase
Refinement

order, notify, deliver, pay = purchase
Buyer = Buyer

Seller = Sales.co = Shipper.co = A/R.co

Buyer

order

pay
A/R

Sales

Shipper

deliver
notify

And the idea of refinement nicely supports the concept of business process detailing or decomposition.

This refinement combines two things:

Action refinement: an abstract purchase action is refined in a sequence of order, deliver, pay.

Type refinement: an abstract seller type is refined to the sales, shipper, and a/r roles

There are more detailed attributes in the refined model, and a mapping from the refined to the abstract in terms of
attributes and action sequences.

74© ICON Computing http://www.iconcomp.com

74© ICON Computing

Business Design: As-is and To-be

• Analyze existing interaction

• Extract essential behavior

• Do a re-design (refinement)

• Framework for use-cases

• Many business implications
– performance

– new functionality

– cycle-time

– error rate

– costs

– phased transition plan

essential

model

job

fix

test
track

As-Is

trackdispatch
report

fix

test

To-Be

In face, the very buzz-phrase Business Process Re-engineering also has a well-defined meaning in Catalysis. The
process of business (re)design consists of:

Build an as-is model of the business, at least in the areas of suspected problems

Build a more abstract model of the real business purpose being served, abstracting away some specifics of how
it is done today

(Re)refine the abstract model to a better-engineered business design, perhaps with some tasks cut out, some
tasks modified, and some tasks automated.

This is often a collaboration re-design, since many players are typically affected.

This interpretation carries over to most forms of re-engineering.

First, study the existing design and identify places to change or improve

Second, abstract the existing design to the essential task being performed

Third, (re)refine the abstract description to the new re-engineered design

75© ICON Computing http://www.iconcomp.com

75© ICON Computing

���7\SH

Recursive Process - Software or “World”

❒ A software system is an “object” in the business context

❒ Its internal design will be other collaborating objects

���&ROODERUDWLRQ

���&ROODERUDWLRQ

The model of collaboration, type, and refinement carry us from business or “world” models to code.

A software system itself plays a role in business collaborations, with external “actors”

It can be characterized separately by each collaboration it participates in.

It can be specified as a (large) type

Its insides can be designed as a collaboration of finer-grained components

76© ICON Computing http://www.iconcomp.com

76© ICON Computing

UML Development Process with Catalysis

RequirementsRequirements Domain ModelsDomain Models

System ContextSystem Context
Understand the business problem,
system context and requirements.

System SpecificationSystem Specification ScenariosScenarios

Type Model and Op SpecsType Model and Op Specs
Describe external behavior of target

system using problem domain model

Architectural DesignArchitectural Design Platform, Physical ArchitecturePlatform, Physical Architecture

Logical Application ArchitectureLogical Application Architecture

Partition technical and application
architecture components and their

connectors to meet design goals

UML = Unified Modeling Language, standard notation for OO design

UI DesignUI Design

dialog flow,
prototype, usability

DB DesignDB Design

class mapping,

transactions, etc.

Component Internal DesignComponent Internal Design

Design interfaces and classes for
each component; build and test

Interface and Class SpecsInterface and Class Specs

Implementation and TestImplementation and Test

D
ictionary

D
ictionary

These next few slides outline a strawman development process using Catalysis. Details of the process are discussed
elsewhere.

77© ICON Computing http://www.iconcomp.com

77© ICON Computing

Focus on the Problem Domain

External models should reflect the customer’s view of the
problem domain, not the programmer’s view.

Global Groceries

Continuity makes it easier to
• verify model with customer
• train new developers
• estimate maintenance effort
• identify sources of defects

A problem domain focus
helps to ensure continuity
between the software and

the real world.

SQL

Java

Any external model should reflect the client’s view. The concept of refinement lets us map between internal views
and the view that is most natural for a client to understand.

78© ICON Computing http://www.iconcomp.com

78© ICON Computing

Problem Domain Analysis

Entities
sales rep…
customer…
discount ...
product…
sale…

Actions
add sales rep…
back-order product...
start sale…

Dictionary

Global Groceries

Domain Knowledge

Problem Domain Analysis - That part of the development
process dedicated to developing an understanding of
the environment in which a target system will reside
as well as the systems role in that environment.

Mind Map

GLVFRXQW

VDOHV�UHS

SURGXFW

VKHOI

VDOH FDVK
UHJLVWHU

FXVWRPHU

EDQN�FDUG

System Context
Head sales rep

sales rep

Sales System

Credit
Authorization

System

Customer

add sales rep

pay

start sale

V\VWHP

DFWRU XVH�FDVH
RU�DFWLRQ

Requirements System Specification Architectural Design Internal Design

Problem domain analysis is the process of understanding the context for a development effort, and starting to define
a solution to some identified business opportunity or problem.

79© ICON Computing http://www.iconcomp.com

79© ICON Computing

Mind Map: Informal Problem Domain Model

Mind Map - An informal structured representation of a problem domain
Not a stored data model!!

Global Groceries

customer

sales rep

product
 price

shelf

discount
 percent

sale

purchases

Sales System

conducts

records

bank card

&OXVWHUV���'RPDLQ�WHUPV�UHSUHVHQWLQJ
SRWHQWLDO�DWWULEXWHV�

1RGHV���'RPDLQ�WHUPV�UHSUHVHQWLQJ
SRWHQWLDO�REMHFWV��W\SHV��RU�DFWRUV�
&DQ�LQFOXGH�´ULFK�SLFWXUHVµ�DV�GUDZLQJV
RI�WKH�SUREOHP�GRPDLQ

$UFV��RSWLRQDOO\�GLUHFWHG�DQG�ODEHOHG���
5HSUHVHQWDWLRQV�RI�SRWHQWLDO�DVVRFLDWLRQV
RU�FROODERUDWLRQV�EHWZHHQ�REMHFWV�

Requirements System Specification Architectural Design Internal Design

Can be formalized if appropriate

A mind-map is a very informal description, and may be enhanced with other informal tools like storyboard, rich
pictures, etc.

A problem domain model can also be a formal collaboration model of the domain itself, specifying the object types
(human, organizational, machine), the actions they participate in, specifications of those actions in terms of a type
model of all objects involved, etc. This model can use all the formal tools of Catalysis, including refinement and
frameworks.

80© ICON Computing http://www.iconcomp.com

80© ICON Computing

System Context -- a Collaboration

Head sales rep

Sales Rep

Credit
Authorization

System

Customer

add authorized sales rep
remove authorized sales rep

pay by bank card

start sale
add item

remove item
close sale
cancel sale

Sales System

6SHFLDOL]DWLRQ���,QGLFDWHV�WKDW
D�VSHFLDOL]HG�DFWRU�FDQ�DOVR
SOD\�WKH�UROH�RI�D�PRUH

JHQHUDO�DFWRU�

$FWRU���$�SHUVRQ��H[LVWLQJ�V\VWHP�
GHYLFH��HWF��WKDW�LQWHUDFWV�GLUHFWO\

ZLWK�WKH�WDUJHW�V\VWHP�

7DUJHW�6\VWHP���7KH�V\VWHP
RU�FRPSRQHQW�XQGHU

FRQVWUXFWLRQ�

8VH�&DVH���$FWLRQ���$Q
LQWHUDFWLRQ�EHWZHHQ�WKH�V\VWHP
DQG�DQ�DFWRU�WR�DFFRPSOLVK�D

XVHIXO�XQLW�RI�ZRUN�

System Context Model -A structured representation of the collaborations
that take place between a system and objects in
its surrounding environment (context).

Requirements System Specification Architectural Design Internal Design

This system context shows all the external objects that will interact with the system of interest, and describes, at a
high level, what their interactions will be.

81© ICON Computing http://www.iconcomp.com

81© ICON Computing

Scenario of Use

startSale()

addItem(watzit, 3)

total := closeSale()

sales rep customer

salesSystem creditAuthorization
System

authorized := authorizePayment(bankCard,
pin, total)

pay(bankCard, pin)

Context: A customer approaches a sales rep with the intention of purchasing three watzits
using her bank card. There are sufficient funds in her account to pay
for the purchase. The sales rep has completed his last sale so there is currently
no sale in progress.$FWRUV�LGHQWLILHG

IURP�6\VWHP�&RQWH[W��

1DUUDWLYH�

The sales rep starts a new sale. The total
for the sale is $0.00.

The sales rep adds the three watzits
to the current sale.

The sales rep closes the sale. The sales
system returns the total due.

The customer inserts her bank card into
the reader and enters her pin number

The Sales System requests payment
authorization from the credit authorization
system. The system authorizes payment.

,QWHUDFWLRQV��IURP�V\VWHP�FRQWH[W�DFWLRQV

Requirements System Specification Architectural Design Internal Design

A scenarios depicts a specific trace through a collaboration.

82© ICON Computing http://www.iconcomp.com

82© ICON Computing

Type Model and Operation Specs

Sales System <<type>>

startSale ()
addItem (Product, quantity)
closeSale ()
pay (bankCard, Pin)

,QWHUIDFH�2SHUDWLRQV
RI�6\VWHP

2SHUDWLRQ�6SHF��

2SHUDWLRQ�6SHF��

6\VWHP�RI�,QWHUHVW�

0RGHO�RI�REMHFW�W\SHV�IRU�
WHUPV�XVHG�WR�VSHFLI\�
V\VWHP�RSHUDWLRQV�
1RW�D�VWRUHG�GDWD�PRGHO

1RWH��'RHV�QRW�DV�\HW�FRPPLW�WR�RSHUDWLRQV�RQ�LQGLYLGXDO�FODVVHV�LQVLGH�V\VWHP
,QWHUQDO�FRPSRQHQW�SDUWLWLRQLQJ�DQG�FODVV�GHVLJQ�QRW�GHFLGHG�\HW�

2EMHFW�W\SH�DQG�
DEVWUDFW�DWWULEXWH

Sale

SaleItem
quantity

Payment

Authorization

*

**

currSale
Cust

Product
inventory

Requirements System Specification Architectural Design Internal Design

This model provides the essential specification of the system itself, described as though it were a single object. Of
course, the description is in terms of object types, and their attributes, associations, etc. from the problem domain
itself I.e. those parts of the context this system will need to be aware of in some form.

83© ICON Computing http://www.iconcomp.com

83© ICON Computing

Architecture: Platform and Physical

• 3-Tier Architecture
– Thin Client: User interface, dialog flow logic

– Application Server: Business objects and rules

– Oracle Database: Persistent data storage

• Must explicitly evaluate technical architecture factors
– Scalability, performance, thruput, seats, platform, clustering...

UI Application Server
Inventory DB

64/�UHTXHVWVPHWKRGV!

�YLHZV

1RWH����7LHU�FRXOG�DOVR�EH�D�SXUHO\�ORJLFDO�SDUWLWLRQ�RI�SUHVHQWDWLRQ��EXVLQHVV�REMHFWV��VWRUH

Customer DB

64/�UHTXHVWV

Requirements System Specification Architectural Design Internal Design

Technical and physical architecture is often neglected in projects. It should be begun early, and should be driven by
factors such as scalability, performance and other non-functional goals, thruput, database performance, clustering
capabilities of the target platforms, etc.

The architecture should be validated by some combination of past experience, simulation, and architectural
prototypes.

84© ICON Computing http://www.iconcomp.com

84© ICON Computing

Frequent Buyer Mgr

Credit Authorizer

Inventory Manager
Sales Manager

Architecture: Application Components

• Application components partitioned and interactions designed
– Partition based on ease of change, re-use, buy Vs. build, etc.

• Original domain types split across components, some partly shared

Application Server

Sale SaleItem

Customer

Product

AuthorizationPayment

DB
Server

1

UI

DB
Server

2

Requirements System Specification Architectural Design Internal Design

The application architecture is somewhat independent of the technical architecture. It consists of a partition of the
application behavior into separate components, based on criteria such as re-use, parallel development, localization of
variable parts, etc.

The problem domain types will be spread across these components, with some links between them realized in a form
that depends on the technical architecture chosen e.g. direct pointers, OODB shared object references. Sometimes,
the object types from analysis will appear in a somewhat generalized form in these components e.g. a concrete kind
of problem domain resource may appear as a generic Resource in a resource-manager component.

85© ICON Computing http://www.iconcomp.com

85© ICON Computing

Architecture: Infrastructure Components

• Infrastructure component added for transaction management
– Appropriate application components “linked” to it

Application Server

Inventory Manager

Frequent Buyer Mgr

Sales Manager

Sale SaleItem
Product

Customer

Credit Authorizer

AuthorizationPayment

Transaction Server

Requirements System Specification Architectural Design Internal Design

DB
Server

1

DB
Server

2

FURVV�FRPSRQHQW�WUDQVDFWLRQV

In addition to the application architecture, we must also consider explicit infrastructure components, particularly for
distributed enterprise systems. e.g. the middle tier of a multi-tier system will frequently be responsible for co-
ordinating distributed transactions, managing various resources across multiple users, etc.

The design should leverage of standard architectural components for these services where possible e.g. using
CORBA transaction or event services, or using Microsoft’s Transaction Server.

86© ICON Computing http://www.iconcomp.com

86© ICON Computing

Component Internal Class Design

• Design exposed interfaces of objects visible across components

• Design collaborations at exposed interfaces

• Design collaborations triggered from exposed interfaces

• Design classes to implement exposed interfaces and interactions

Sales Manager

Sale SaleItem

Inventory Manager

Product

interface ISellable {
Money unitPrice ();
void deplete (int quantity);

}

Requirements System Specification Architectural Design Internal Design

class Product implements ISellable {
Money unitPrice () { ...SQL call... }

void deplete (int qty) { …SQL call… }

}

ISellable

LQWHUQDO�LQWHUDFWLRQ�VFHQDULR

Each application component has to be designed and implemented internally as a set of classes that implement the
interfaces required externally, as well as realize the internal interactions required by the original OOA.

The resulting design can (and should) be mapped to the analysis level description of object types. e.g. a design
review must inspect this mapping to justify design choices made, and the correctness of the design.

87© ICON Computing http://www.iconcomp.com

87© ICON Computing

A Recursive Process: Domain to Code

Mind MapSURGXFW

VDOH
FXVWRPHU

EDQN�FDUG

System Context

System

system

a b

c

op1
op2

Type Model
and Op Specs

Architectural Collaborations,
Interfaces, Scenarios

b ca

Scenario
of Interaction

system c

c1

a b

m1
m2

c2

m3
m4

x
y

Class and Interface
Model, Scenarios

Domain ModelsDomain Models

System ContextSystem Context

R
eq

s

ScenariosScenarios

Type Model and Op SpecsType Model and Op Specs

Sp
ec

Platform Physical ArchitecturePlatform Physical Architecture

Logical Application ArchitectureLogical Application Architecture

A
rc

h

Interface and Class SpecsInterface and Class Specs

Implementation and TestImplementation and TestIn
t D

es

Requirements System Specification Architectural Design Internal Design

The entire process is recursive, focused on the collaborations between components or objects. The concepts of type
models, collaborations, refinement, frameworks and patterns can be applied at all levels and across the entire
process.

88© ICON Computing http://www.iconcomp.com

88© ICON Computing

Two Distinct Development Cycles

• Applications
– rapidly built solutions

– specialize and assemble Assets

• Assets = Reusable components
– includes source, executable, designs, kits, ...

– generalized from multiple application needs

– not dreamt-up re-use Assets

application 1 application 2

ILQG�FRPSRQHQWV
VSHFLDOL]H
DVVHPEOH

ILQG�FRPSRQHQWV
VSHFLDOL]H
DVVHPEOH

ILQG�FRPPRQDOLW\
UH�IDFWRU
JHQHUDOL]H

FHUWLI\
FRQILJ�PDQDJH

The artifacts of design and the relationship between them are never developed in a completely top-down manner. In
particular, when developing with components, there are two distinct development cycles at work. Recognizing these
cycles and explicitly planning for them helps maintain an understandable development process, despite the
inevitable unpredictability and opportunistic nature of development.

89© ICON Computing http://www.iconcomp.com

89© ICON Computing

Development Cycle for Applications

❒ Developing Applications
• A managed RAD method is usually the most effective

– Rapid requirements modeling and prototyping

– Short delivery cycles

– Close user involvement

If I had to live my life again, I'd make the same mistakes, only sooner

-- Tallulah Bankhead (1903-1968)

Many applications should follow a RAD cycle (although this may not be suitable for some special cases).

90© ICON Computing http://www.iconcomp.com

90© ICON Computing

target

Why Iterative and Incremental?

time

function LQLWLDO�WDUJHW�XQFOHDU

WDUJHW�EHWWHU�NQRZQ
�RU�PRYHG�

WDUJHW�ZHOO�GHILQHG
�RU�PRYHG�DJDLQ�

• Not everything needed is known up front (or at the “end”)

• Not everything known is needed up front (or at the “end”)

• Frequent iterative and incremental delivery helps function and timeliness

A RAD approach, in which decisions are iteratively made and refined, and the application is delivered in stages of
incremental functionality, decreases the risk of unknown of changing requirements, provided the development is
well managed.

91© ICON Computing http://www.iconcomp.com

91© ICON Computing

Development Cycle for Components

❒ Developing Components for re-use justifies investment
• Well specified and documented interfaces

• Robust against misuse; does not just crash

• Generalized for variation points with parameters, “plug-points”

• Associated packaging with tests, specs, default “plug-ins”, etc.

• Carefully chosen architecture for “kit” of components

• More careful certification and configuration management

Reusable components justify a more thorough specification approach.

92© ICON Computing http://www.iconcomp.com

92© ICON Computing

Re-usable Assets and Variation Points

Variation Point - A location at which a generic component may be
specialized for use in a particular application.

A generic component may come bundled with a set of pre-built variants for some or all
of its variation points or the host application may provide its own variants. A variation

point may have a default variant.

Generic
Component

And generalizing a component to be re-usable takes special care.

93© ICON Computing http://www.iconcomp.com

93© ICON Computing

Golden Rule of Design

❒ Distinct Categories of Change
• Modification

• Extension

• Reuse

 Design for change.

 Open Closed Principle - Ideally a method, class, or component is open to
extension but closed to modification.

94© ICON Computing http://www.iconcomp.com

94© ICON Computing

Outline

❒ Method Overview

❒ Component Specification - Types

❒ Component Design - Collaborations

❒ Component Architectures

❒ Refinements

❒ Business Example

❒ Frameworks

And that brings us to Frameworks, the Catalysis construct for characterizing common patterns that occur across
types, collaborations, and refinements, while permitting adaptation and “plugging-in” to those patterns.

95© ICON Computing http://www.iconcomp.com

95© ICON Computing

Exploiting Packages

❒ A package is unit of “knowledge”
• a unit of work, CM, versioning, etc.

• can import other packages

• a “closed world” (modulo imports)

❒ Essential to separate refinements e.g. interface vs. implementation
• implementation imports interfaces it implements and uses (with their

behavior specs, to the extend implementation depends on them)

• each package constitutes a component

❒ Can say different things about the “same” entity in P1, P2, P3
• better ways of structuring, project planning, composing

❒ Strong basis in formal methods: traits and theories
• formalisms made approachable

P1

P2 P3

96© ICON Computing http://www.iconcomp.com

96© ICON Computing

Frameworks - Generic Components

❒ A generic model / design / implementation component that
• Defines the broad generic structure and behavior

• Provides plug-points for adaptation

allocate room to
seminar session if...

allocate machine time
to production lots if ...

generalize

allocate resources
to jobs if ...

plug in

room session time lot

Consider the two concrete applications shown, one for seminar scheduling, and the other for factory floor
automation.

Could we make both pieces of requirements look the same, by abstracting out some differences?

Sure. You end up with a description of a generic resource-allocation problem.

Of course, in Catalysis we do not want to lose precision just because we have become more abstract.

97© ICON Computing http://www.iconcomp.com

97© ICON Computing

Resource Allocation Framework

ResourceAllocation

<Job>
when: DateRange

<Resource>

<Requirement>

*

** meets
<Capability>

*

capability

* 0,1

allocatedschedule

invariants

Job:: //only allocate resource whose capability matches requirements
 allocated <> nil implies allocated.capability.meets #includes (self.requirement)

Resource:: //do not double-book any resource i.e. at most 1 job per date
 Date.forAll (d | self.schedule #select (j | j.when.includes(d)) #size <=1)

requirement

So we build a proper type model to express what we want to say.

We can even formalize, if appropriate, the operations specifications and invariants that apply to the generic problem
of resource allocation.

98© ICON Computing http://www.iconcomp.com

98© ICON Computing

“Applying” a Modeling Framework

❒ “Apply” resource-allocation twice to course scheduling
• Each application substitutes different resource, capability, etc.

• Both apply to the same job: Seminar Session

Course-Scheduling

Topic

SeminarSession
when: DateRange

Room

RoomFacility

Instructor

InstructorSkill

ResourceAllocResourceAlloc

inv capability == certs.skills

Certification

* skills

* certs

We can then apply this resource-allocation framework to a particular problem domain. In this case, to seminar
scheduling where we allocate rooms and instructors for each seminar.

99© ICON Computing http://www.iconcomp.com

99© ICON Computing

The “Model” is Automatically Generated

Course-Scheduling

SeminarSession:: //only allocate suitable instructors and rooms
 instructor <> nil implies instructor.capability.meets instr Rqmts (topic)
 room <> nil implies room.facility.meets Room Rqmts (topic)

Room:: //do not double-book any rooms i.e. at most 1 session per date
 Date.forAll (d | self.schedule #select (j | j.when.includes(d)) #size <=1)
Instructor:: //do not double-book any instructor i.e. at most 1 session per date
 Date.forAll (d | self.schedule #select (j | j.when.includes(d)) #size <=1)

Topic

SeminarSession
when: DateRangeRoom

RoomFacility

Instructor

InstructorSkill

*

* meets Room Rqmts> *

facility

schedule> *

0,1 <room

*

*

inv capability == certs.skills

Certification

* skills

* certs

* <meets instr Rqmts *

capability

* <schedule

instructor> 0,1

*

*

By applying the framework, and making the appropriate mappings, we have implicit;y defined the entire model
shown above. An intelligent tool would be able to easily switch between the summary and detailed views.

This simple example underscores a very powerful capability in Catalysis for abstracting and re-using patterns of
models, specifications, or designs in different contexts in a much more effective manner than just cut-and-paste.

100© ICON Computing http://www.iconcomp.com

100© ICON Computing

What is a Framework (in Catalysis)?

A type defines properties of a set of objects
- Instructor, SeminarSession

A framework defines properties of a set of suitable types
- DictionaryEntry: any type with equality, framework does “lookup”

A multi-type framework defines properties of a set of

families of suitable and mutually compatible types

- Allocate: Resource-Job

101© ICON Computing http://www.iconcomp.com

101© ICON Computing

Frameworks: Two Supporting Dimensions

❒ Frameworks can be described at different levels of refinement

❒ Frameworks themselves are composed of smaller frameworks

Frameworks in Catalysis are more flexible and expressive, and hence more practical for complex problems, because
of two other capabilities that they can leverage:

Like any other models, frameworks can be described at many levels of refinement.

Frameworks themselves can be composed of other frameworks.

102© ICON Computing http://www.iconcomp.com

102© ICON Computing

Design Patterns as Frameworks

Subject-Observer

<Observer>
isProjection(Subject): boolean

update()
 post: isProjection(sub)

<Subject>
s: State
inv changed(s)=>
 obs#forAll (o |
 obs.update(self))

 register(Observer)
 unregister(Observer)

obs

sub *

externally: subject and observers always appear to be in sync
inv Subject#forAll (s | s.obs#forAll (isProjection(s))

Subject-Observer really is such a framework. When we “apply” it, we need to substitute for appropriate parts of this
frameworks.

Specifically, this frameworks is expressed in terms of types, not classes and inheritance.

We have one type Subject, and every subject has a state, called s. We do not know the type of this state attribute, as
it may be very different from one application of this framework to another. It may range from a string, to the length
of an array, to a complex type. However, in all cases, there is one underlying requirement on this state type --
whenever it changes, every observer must be updated. I.e. we need a definition for changed for any type that
corresponds to State in any application of this framework.

Similarly, any subject has observers that can be updated when the subject changes. Once again, we do not know
how exactly any observer will update itself -- e.g. it can range from changing a color on a screen from green to red,
or updating some cached value, or generating further notifications. As before, we abstract out these differences
without losing any of the precision we need.

We have introduced a parameterized boolean attribute isProjection(subject) on the observer. When we apply this
framework, each observer must come with some corresponding definition of isProjection. Moreover, when that
observer’s update method has been invoked, it must guarantee that the observer is a projection of that subject.

This framework also illlustrates an additional feature of Catalysis. A collaboration also defines a unit of scoping for
actions. Some actions are internal to the collaboration, others are external. We can now define invariants that apply
to all external actions, such as those actions not listed in the collaboration. However, the internal operations, such as
update, may be invoked even when these invariants do not hold; in fact, in this case, the internal actions are
specifically designed to restore those invariants.

103© ICON Computing http://www.iconcomp.com

103© ICON Computing

Applying Design Patterns

❒ The instantiation defines mappings of types, queries, actions
• Needed to generate the instantiation, and for the “retrieval”

Power-Switch-Display

PowerSwitch
isOn: boolean

turnOn
turnOff

SwitchDisplay
isRed: boolean

update

SubjectObserver

subject
[s = isOn]

observer
[isProjection(s) = s.isOn <=> isRed]

And here is what it would look like upon substitution.

We have made our PowerSwitch play the role of a subject with respect to a SwitchDisplay that is its observer.

We have also correspondingly substituted the isOn attribute for the abstract state of a subject, and a simple rule for
the isProjection attribute of the observer.

104© ICON Computing http://www.iconcomp.com

104© ICON Computing

The Holy Grail of Software Development

• Assemble independently delivered components at any level and binding time

Catalysis makes use of frameworks for requirements, designs, architectures, user-interface standards, refinements,
use-cases, and more. This is just a fancy graphic for suggesting the prevalent theme of composition and “plugging-
in” at all levels of development.

The underlying technologies of polymorphism, dynamic binding, and frameworks with substitution, take us a few
steps closer to that holy-grail of software development:

Assemble independently delivered components of any size or granularity, at any level of development, and at
any binding time from conception to run-time.

105© ICON Computing http://www.iconcomp.com

105© ICON Computing

Example Frameworks at All Levels

• Constructive approach to modeling and design with full traceability

• Libraries and commerce of frameworks of models, designs, and code

Business Models

Barter

Trader

Authorizer

Domain Models

Resource Allocation

Account Settlement

User-Interface Patterns

Design Patterns

Subject-Observer

2-Way Link

Cache

Moving Window

Data Normalization

Fundamentals

Total Ordering

Groups

Range

Descriptors

Catalysis frameworks span a wide range, from business to academic-sounding fundamentals:

Business models:

What does it mean to barter? It means two parties swap quantities of two dissimilar items, with some
notion of equality of value between the item types.

What is a trader? A party that mediates in a barter, and adds on a couple of additional barters for the
service.

What is authorization? ….

..down to fundamentals:

What is a total ordering? This framework applies to numbers, money, time, latitudes, ...

What is a range? This frameworks applies to time, money, numbers, …

…and so on.

106© ICON Computing http://www.iconcomp.com

106© ICON Computing

Members
Rentals

Generic Models

Abe’s Auto Rental Membership Program

Component-Based Modeling and Specs

❒ Build models, specs, and implementations from generic
component libraries by customizing and composing

“Framework”
Component
Libraries

Rentals
Members

interfaces for customization

customize: rent Cars

Our vision of component-based development with frameworks calls for the rapid composition of components for
models, design, and code, with adaptation and customization of frameworks. Much of modeling or design work
should be done by such composition, as opposed to being worked from scratch.

107© ICON Computing http://www.iconcomp.com

107© ICON Computing

Class Frameworks - Using Subclasses

❒ Subclass inherits superclass implementation
• Data members always apply

• Member functions may be filled-in or overridden

• New data and function members may be defined

❒ In Java, the subclass also extends the type of the superclass
• Subclass objects presumed substitutable for the superclass type

• Classes may also be treated as types

The implementation mechanisms provided by subclasses and polymorphism are very powerful. They will take on a
somewhat clearer meaning once we have understood the distinction between type and class, and between abstract
type-model queries vs. concrete data representations in a class.

Different languages treat classes and types differently.

Java permits interfaces and the interface-extension (subtype) hierarchy to be fully separated from classes. It also
allows a class to be used as a type i.e. in the declaration of a parameter, local variable, or data member. Subclasses
are treated as subtypes.

108© ICON Computing http://www.iconcomp.com

108© ICON Computing

Framework-style Design with Subclasses

❒ Plugging-in a small method modifies overall behavior
• Design of these “plug-points” is important for extensibility

• Uses the “template-method” design pattern

Class1

m1
m2
m3

{.....m3().…}

{.... m3() .…}

code for m3

Class2

m3 code for m3

A common style of framework design in OOP uses the template method pattern, where a subclass fills in just certain
pieces of a method provided by a superclass.

109© ICON Computing http://www.iconcomp.com

109© ICON Computing

An Example

❒ Shape.draw must have common behavior for all shapes
• display the shape geometry

• print coordinates in a font proportional to the bounding box

10,20

10,20

10,20

Here is an example problem.

110© ICON Computing http://www.iconcomp.com

110© ICON Computing

The “Template Method” pattern

class Shape implements IShape {

private Point center;

public void draw () {

BBox b = this.bBox();
scaleAndPrint (center, b);
this.render();

}

protected abstract BBox bBox();

protected abstract void render();

}

❒ Problem: difficult to document, understand, extend, test
• Which base methods are affected by an override?

• To add a new subclass you have to understand base implementation

We implement this design by defining a public method draw and two protected abstract methods which must be
filled in by subclasses of shape: bBox and render.

This style of design is quite powerful -- we design and build a complete skeleton implementation of behaviors at the
superclass, but consciously leave certain placeholders in that implementations at points where subclasses can plug-in
to adapt the overall behaviors.

However, non-trivial frameworks built in this style are difficult to document, understand, extend, and test. A
developer who wishes to extend the framework and looks at the source code does not have an explicit description of
which overall methods will be affected by an override in the subclass, or which methods must be simultaneously
overridden in some mutually compatible way for the superclass framework to work correctly.

If the developer must understand the framework implementation in order to extend it, then we have an unacceptable
degree of coupling between the two, and framework extensions will have to be re-visited and revised anytime the
framework undergoes any implementation changes.

111© ICON Computing http://www.iconcomp.com

111© ICON Computing

Client View vs. Subclass View

❒ The client does not know that bBox and render are called
• Client’s model and specification of draw do not mention them

❒ Subclass designer must know how bBox and render are used
• Simple: expose the entire implementation of draw to subclass

• Better: build abstract model which only exposes essential parts

Shape

drawclient

subclass

Note that part of our design is important to the sub-classes, but entirely irrelevant to external clients. Thus, the sub-
class needs a wider model of the super-class than does external clients.

Framework implementations commonly require the sub-class designer to understand the entire framework
implementation. Catalysis offers an alternate, where the sub-class interface is explicitly described and modeled. This
makes the framework extension document as important as the external client description.

112© ICON Computing http://www.iconcomp.com

112© ICON Computing

Type Models for Subclass Interface

❒ The subclass uses boundingBox, superclass uses contains
• An invariant relates these to each other

– and hence to all other methods, like bBox() and render()

model { BBox boundingBox; }

inv this.contains(p) => boundingBox.contains(p)

❒ Subclasses implement render and bBox (subclass interface)
• These must behave in a compatible way

model { BBox bBox; }

BBox bBox() spec { return == boundingBox; }

render() spec { :- nothing written outside of boundingBox; }

❒ Superclass draw calls bBox and render
draw spec { -> self.bBox(); ->self.render(); }

For example, subclasses must implement render and bBox. However, though each subclass can implement these in
any way it chooses, there is a constraint between these two methods that must be satisfied for the framework to
function properly. Specifically, if a subclass renders itself outside of the region returned by its bBox method, the
framework is likely to malfunction.

We have described this with an informal post-condition on the render method; this could be formalized if needed.

113© ICON Computing http://www.iconcomp.com

113© ICON Computing

CBD - Some Missing Pieces!

❒ Component-based development will take off when:
• Component interfaces have clear specifications

• Component libraries include generic designs and architectures

• Generic components can be customized as needed

• Composition and refinement of component models is well defined

• Extraction of abstract patterns is well defined

While it has become very fashionable to talk about component-based development, there are certain enabling factors
that need to be present to enable true CBD:

- The interfaces of components must have precise behavioral guarantees

- Design repositories contain implementation as well as design and architectural units

- Components -- design and code -- can be customized and adapted to different needs

- Composition and refinement of generic components is a well-defined operation

- It is possible to abstract out generic fragments from detailed designs

114© ICON Computing http://www.iconcomp.com

114© ICON Computing

Summary

❒ We discussed the Catalysis method for CBD using objects

• Type-modeling and specification

• Collaborations and composition

• Refinement of all artifacts

• Frameworks for recurring patterns across all artifacts

• From business-level to code with well-founded use-cases

❒ Particularly well suited for component-based development

• Features very well suited to Java, Java Beans, Active-X, etc.

• Specification constructs enable large grained components and frameworks

• Enables precision, assembly, smart tool support

And that, as they say, is that :-)

More details available in the book, and at our web site:

http://www.iconcomp.com

115© ICON Computing http://www.iconcomp.com

115© ICON Computing

References

– “Objects, Components, and Frameworks with UML: The Catalysis Approach”, D.
D’Souza and A. Wills, http://www.iconcomp.com, Addison Wesley, Winter 1997,
ISBN 0-201-31012-0

– UML 1.0: http://www.rational.com

– “Design Patterns: Elements of Reusable Object-Oriented Software”, Erich Gamma,
et al, Addison Wesley, 1994.

– “Analysis Patterns: Reusable Object Models”, Martin Fowler, Addison Wesley, 1997

– “Contracts: Specifying Behavioural Compositions in Object-Oriented Systems”
Richard Helm et al, OOPSLA/ECOOP 1990

– “Larch: Languages and Tools for Formal Specification”, John V. Guttag and James J.
Horning (editors), Springer-Verlag Texts and Monographs in CS, 1993

116© ICON Computing http://www.iconcomp.com

116© ICON Computing

ICON’s Worldwide Services

❒ Consulting
• Strategic: Management and technology briefings

• Mentoring: Team and project skills transfer

• Development: analysis, design, architecture

• Audits: designs, architecture, requirements

• Process: Customizing development process

❒ Training
• Analysis and Design: UML, Catalysis, Fusion

• Implementation: Java, C++, Smalltalk

• Advanced: Analysis, Design Patterns, Programming...

• Project management, Technology Overviews

❒ HeadStart
• Custom fast-track migration

• Tailored combination package

And here are some of the services we provide to projects that are using object and component technology, and our
areas of expertise in these technologies.

The services span mentoring, training, consulting, and strategic planning, and cover implementation, architecture,
requirements, componentization, and management.

We support methods based on UML, Catalysis, and Team Fusion.

The implementation languages include Java, C++, and Smalltalk.

 Contact us if you would like some more information.

Phone: (512) 258-8437 Fax: (512) 258-0086

Email: info@iconcomp.com http://www.iconcomp.com

