
Appendix A Object Constraint
Language

The Object Constraint Language (OCL), a standard part of UML 1.1, is a specification
language used in conjunction with UML models. It is an expression-based, side-effect-free
language that eschews mathematical symbols (∀, ∃ , and so on) for textual equivalents
(forAll, exists). It uses a syntax more usual in object-oriented languages: ∀ x: T, p(x)
becomes T->forAll (x | x.p).

OCL Summary

OCL uses a Smalltalk-based “block” syntax to allow you to define some kinds of func-
tions conveniently and inline, but it does not provide corresponding type rules for this
based on generic types. For our discussion here, we treat blocks as first-class functions
and use the syntax (T1 X T2 X T3 -> T) for such a function. This is purely a syntactic con-
venience; functions can be modeled as objects. Any function f (a,b): c can be described as
an object with a single method eval (a, b): c. Thus,

aCollection -> select (x | p(x)) -- returns those elements for which p(x) is true

can be typed as follows:

Collection(T):: select (T -> Boolean): Collection(T)
-- select takes a block parameter that maps each element to a Boolean; select

returns another collection of T

Most collection functions on Collection(T) use blocks that are Predicate(T) to do selec-
tion; Comparator(T) to do sorting; and Converter(T, T1) to do a general mapping from the
collection elements.

Predicate(T) = T->Boolean
Comparator(T) = T X T -> Boolean
Converter(T,T1) = T -> T1

Collection types include sets (no duplicates), bags (duplicates), and sequences (dupli-
cates, ordered). In the following description, explanations in italics indicate where we use
Catalysis semantics or extensions or alternative syntax. Functions on collections also
apply to sets, sequences, and bags.
689

Collection
Expression Description

Collection(T) Collections whose members all belong to type T.
In the following expressions, c, c2: Collection; e: T; P: T ->
Boolean; func: T ->Object.

c->size Number of elements in the collection; for a bag or sequence,
duplicates are counted as separate items.

c->sum Sum of elements in the collection. Elements must be numbers or have
a + operation defined with the appropriate properties (described as a
“provided” clause on the framework).

c->count(e) The number of times that e is in c.
c->isEmpty Same as (c->size = 0).
c->notEmpty Same as (not c->isEmpty).
c->asSet A set corresponding to the collection (duplicates are dropped,

sequencing is lost).
c->asSequence A sequence corresponding to the collection.

More useful: c->sortedBy (Comparator(T)).
c->asBag A bag corresponding to the collection.
c = c2 A standard “same object” test on c and c2. The uniqueness constraints

on collections are Set: no two sets have the same elements; Bag: no
two bags have the same elements in the same counts; Sequence: no
two sequences have the same elements in the same order. This is a
specification ploy to simplify things. When dealing with mutable
collections in a typical programming language, you would more likely
use c.equals
(c2), where equals does the comparison appropriate to that
collection type.

c->includes(e) Boolean; c->exists (x | x = e). Catalysis alternative, e: c.
c->excludes(e) Boolean; not c->includes(e).
c->includesAll(c2) Boolean; c includes all the elements in c2.

Catalysis alternative, c2–>subsetOf(c)
c->including(e) The collection that includes all of c as well as e.

Catalysis alternative, c + e.
c->excluding(e) The collection that includes all of c except e.

Catalysis alternative, c – e.
c->exists(x | P) Boolean; there is at least one element in c, named x, for which

predicate P is true. Catalysis alternative, c [x | P] <> 0.
c->exists(P) c->exists(self | P). Catalysis alternative, c [P] <> 0.
c->forAll(x | P) Boolean; for every element in c, named x, predicate P is true. In

Catalysis, we use the context operator, “::”, to mean for every
element of this set, and write x: c :: P.

c->forAll(P) Same as c->forAll(self | P). Catalysis alternative, c :: P.
c->select(x | P) The collection of those elements in c for which P is true.

Catalysis alternative, c [x | P].
c->select(P) Same as c->select(self | P). Catalysis alternative, c [P].
c->reject(x | P) c->select(x | not P). Catalysis alternative, c [x | not P].
c->reject(P) c->reject(self | P). Catalysis alternative, c [not P].
c->collect(x | E) The bag obtained by applying E to each element of c, named x.
c->collect(E) Same as c->collect(self | E).
c.attribute The collection(of type of c) consisting of the attribute of each element

of c.
c->iterate(x; a = E | E2) The object obtained by applying E2 to each element of c, named x,

where a is initialized to the value of the expression E.
690

Appendix A Object Constraint Language 691
Sequence
Expression Description

Seq(T) Sequence of elements of type T.
In these expressions, s: Seq(T); e, x, y, z: T, i,j: Integer.

s->union (c) The sequence obtained by appending c to s.
Catalysis alternative, s + c.

s->append (e) The sequence obtained by appending e to s.
Catalysis alternative, s + e.

s->prepend (e) The sequence obtained by prepending e to s. result = Seq { e,
s }.

s->at (i) The ith element of the sequence.
s->first s->first = s->at(1).
s->last s->last = s->at(s->size).
s->subSequence (i, j) The sequence from positions i to j, inclusive (element positions start at

1). In Catalysis you can define more convenient functions as
extensions.

Seq { x, y, z, x } The sequence containing x, y, z, x, in that order.

Bag
Expression Description

Bag(T) Collection of elements of type T, with duplicates.
In the following, b: Bag (T); e, x, y, z: T.

b->union (c) The bag with all elements from b and c.
Catalysis alternative, b + c.

b->intersection (c) The bag with elements common to both b and c.
Catalysis alternative, b * c.

Bag { x, y, z, x } The bag containing two occurrences of x, one occurrence of y, and one
occurrence of z.

Set
Expression Description

Set(T) The type of unordered collections of objects of type T with no
duplicates.
In the following, c: Collection; s1, s2: Set (T); x, y, z: T.

s1->union (c) The set with all elements from s1 and c.
Catalysis alternative, s1 + c.

s1->intersection(c) The set with elements common to both s1 and c.
Catalysis alternative, s1 * c.

s1->symmetric The set containing all the elements that are in s1 or in s2 but not
Difference (s2) in both.

Catalysis alternative, s1 – s2.
Set { x, y, z } The set containing x, y, z.

692 APPENDICES
Object (Called OclAny)
Expression Description

OclAny The type that includes all others.
In the following, x, y : OclAny, T is an OCL type.

x = y x and y are the same object.
x <> y not (x = y).
x.oclType The type of x.
x.isKindOf (T) True if T is a supertype (transitive) of the type of x.

Types coerce to sets, so the Catalysis alternative is x : T.
x.isTypeOf (T) True if T is equal to the type of x. Don’t use this one.
x.asType (T) Results in x, but of type T. Undefined if T is not the actual type of x or

one of its subtypes.

OclType: A Metatype
Expression Description

T: OclType T is an OCL type.
T.new The set of new instances of type T; also T*new. Not defined in OCL.
T.allInstances All the instances of type T. In Catalysis a type is a set, so this is not used.

Boolean
Expression Description

Boolean Expressions yielding true, false (or unknown).
In the following, b, b2: Boolean; e1, e2: Object.

b and b2, b or b2, b xor b2, not b The standard operators. If any part of a Boolean expression
fully determines the result, then it does not matter if some
other parts of that expression have unknown or undefined
results.
Catalysis alternatives: b & b2, b | b2.

b implies b2 True if b is false or if b is true and b2 is true.
Catalysis alternative, b ==> b2.

if b then e1 else e2 endif If b is true the result is the value of e1; otherwise, the result
is the value of e2.

String
Expression Description

String A sequence of ASCII characters.
In the following, s, s2: String; l,u: Integer.

s = s2 s and s2 have the same characters in the same order.
s.size The number of characters in s.
s.concat(s2) The concatenation of s and s2.
s.substring(l, u) The string from positions l to u, inclusive (positions start at 1).
s.toUpper The value of s with all characters converted to uppercase characters.
s.toLower The value of s with all characters converted to lowercase characters.

Appendix A Object Constraint Language 693
Real Numbers
Expression Description

Real Real numbers. In the following, r, r2: Real.
r = r2 r and r2 have the same value.
< > >= <= Usual meaning for numbers.
+ –* / Usual meaning for numbers.
r.abs The absolute value of r. (result >= 0) and (result – r = 0).
r.floor The largest integer, which is less than or equal to r.

(result <= r) and (result + 1 > r).
r.ceiling The smallest integer, which is greater than or equal to r.

(result >= r) and (result –1 < r).
r.min(r2) The minimum of r and r2. result = if r <= r2 then r else r2 endif.
r. max(r2) The maximum of r and r2. result = if r >= r2 then r else r2 endif.

Integers
Expression Description

Integer Integers. In the following, i, i2: Integer.
i div i2 integer division. result * i2 <= i and result * (i2 + 1) > i.
i mod i2 i modulo i2. result = i – (i.div(i2) * i2).

OCL in Catalysis

In OCL the built-in objects are immutable and have fixed relations with other objects. In
Catalysis we model all these relations as attributes or parameterized attributes. Thus, a < b
is syntactical sugar for a.<(b), or a.isLessThan(b). Because Catalysis also offers package
scope, this could also be described as a top-level query within a package: isLessThan (a,
b).

We treat types as sets, so we can use type expressions such as Performer = Dancer +
Singer. Note that this is different from inheriting from a common supertype Performer: In
the former, Dancer and Singer are not defined in terms of Performer; instead, Performer is
a type defined in terms of Dancer and Singer.

Catalysis collections are generic types in a template package that is predefined for basic
UML. All collections are immutable; the many collection functions return other collec-
tions. A later section, Extending OCL, shows how extensions are readily accommodated
in Catalysis.

In Catalysis, navigating through a collection yields a like collection: Bag->Bag,
Sequence->Sequence, and so on. The asSet, asSeq, and asBag operators (or asType (T)
equivalents) provide conversions. Thus, the following yields a bag of last names contain-
ing as many (possibly duplicated) entries as joe has friends.

joe.friends ->asBag.lastName

OCL does not provide a simple means to refer to the creation of a new object in a post-
condition; Catalysis provides Type*new and the more conventional Type.new.

694 APPENDICES
The Choice of “->”

We have found the OCL “->” symbol counterintuitive to use and to teach to others. Popu-
lar languages such as C and C++ use -> to mean “dereference,” that is, to move through a
level of indirection. In contrast, OCL uses it to mean do not move through a level of indi-
rection.

joe.cars -- the set of Joe’s cars
joe.cars.size -- navigate through the set, collecting each car’s size into

the result
joe.cars -> size -- do not navigate through; just give the size of the set

It would be more consistent to have the “.” operator have the same meaning for collec-
tions and noncollection types and to use -> to apply to each element in the collection. In
particular, Catalysis frameworks could be used to define the meaning of -> as no more
than syntactic sugar for the following:

package Collections (X);
type Sequence(T)

map (T->X) : Sequence(X) -- sequence resulting from applying block to
each element

inv length = length(map(f)) & i: [0...length] map(f) [i] = f (self [i])

Now, c->a is just syntactic sugar for c.map (e | e.a).

Now, writing joe.cars -> size translates into joe.cars.map (e | e.size).

Extending OCL in Catalysis

OCL provides a fixed set of basic types and operations on numbers, sets, sequences, and
so on. No such set will suffice for real applications unless they can be extended; many
common constraints would be awkward if limited to the OCL set. The Catalysis semantics
of packages lets us extend these basic types and operations without requiring any change
to OCL. Thus, Catalysis sequences could support something like this:

Sequence(T):: shortestInitialSubsequence (Predicate(Sequence(T)))

This statement evaluates to the shortest initial subsequence that satisfies the test argument,
assuming that such a subsequence exists.

A user-defined package can introduce additional convenient terms on existing OCL
types as needed, without the need to modify the predefined OCL package in any way.
According to the Catalysis package rules, they can even continue to use existing packages
(see Figure A.1). Here are some expressions you might find useful as extensions to OCL:

Set(T)::
any (Pred): T -- returns any element that satisfies Pred
one (Pred): Boolean -- Boolean; exactly one element satisfies Pred
theOne (Pred): T -- returns the single element that satisfies Pred

Map(A,B):: -- a mapping from A to B
domain -- standard definitions of domain

Appendix A Object Constraint Language 695
range -- . . . and range
value (A) -- the corresponding B
keys (B) -- the set of A’s that are mapped to this B

You will probably find Time, Date, DateRange, and Duration to be useful types. In
reality, we would write these as frameworks on any total-ordered type (T, Range(T),
and Delta(T)). For more details, see www.catalysis.org.

Defining Basic Types Using OCL

There are no “primitives” in Catalysis, only a set of basic object types that are defined in
standard packages. Using exactly the same mechanisms, you can define your own basic
types and packages of basic types suitable for your problem domain (see Figure A.2).
Remember to add uniqueness constraints, which help define the meaning of object identity
for your object type. There are frameworks, algebraic in nature, that capture even these
basic recurring patterns.

Figure A.1 Using Catalysis extension to customize OCL.

This works fine; would
not work with subtyping

Set(T)

OCL++

OCL

Document

figs: Seq(Fig)

Existing Package

Editor

doc: Document

Working Package

inv e: Editor:: e.doc.figs.shortestInitialSubsequence(…)

Set(T)

shortestInitialSubsequence

696 APPENDICES
Figure A.2 Examples of defining basic types.

Integer

global 0: Integer
+ (Integer) : Integer
prev : Integer
next : Integer
inv

self.prev.next = self -- inverses
& self + 0 = self -- rules of ‘+’
& self + x = self.next + x.prev -- recursive

Location

latitude: Integer
longitude: Integer

inv
-- no two locations have same latitude–longitude pair
unique (latitude, longitude)

movedBy (by: Vector) : Location
offsetFrom (from: Location) : Vector

inv -- consistent movedBy and offsetFrom
 loc: Location :: -- for any location, loc

 movedBy (offsetFrom (loc)) = loc

